D292

MAR / 15 **LD292** VERSION 3

OPERATION & MAINTENANCE INSTRUCTIONS MANUAL

FOUNDATION FIELDBUS GAGE PRESSURE TRANSMITTER

Specifications and information are subject to change without notice. Up-to-date address information is available on our website.

web: www.smar.com/contactus.asp

INTRODUCTION

The **LD292** is from the first generation of Fieldbus Devices. It is an economical alternative gauge pressure transmitter. It is based on a field-proven capacitive sensor that provides reliable operation and high performance. This lightweight design eliminates the need for mounting brackets and transmitter supports in many applications. It's microprocessor-based electronics allows total interchangeability with Smar capacitive sensors. It is automatically corrects sensors characteristics changes caused by temperature fluctuations. The digital technology used in the **LD292** enables the choice of several types of transfer functions, an easy interface between the field and the control room and several interesting features that considerably reduce the installation, operation and maintenance costs.

The LD292 is part of Smar's complete 302 line of Fieldbus devices.

Some of the advantages of bi-directional digital communications are known from existing smart transmitter protocols: Higher accuracy, multi-variable access, remote configuration and diagnostics, and multi-dropping of several devices on a single pair of wires.

Using Fieldbus technology, with its capability to interconnect several devices, very large control schemes can be constructed. In order too be user friendly the function block concept was introduced.

The **LD292**, like the rest of the 302 family, has some Function Blocks built in, like analog Input, PID controller, Input selector and Display Block.

The need for implementation of Fieldbus in small as well as large systems was considered when developing the entire 302 line of Fieldbus devices. They have the common features of being able to act as a master on the network and be configured locally using a magnetic tool, eliminating the need for a configurator or console in many basic applications.

The **LD292** is available as a product on its own, but also replaces the circuit board for the LD291. They use the same sensor board. Refer to the maintenance section of this manual for instructions on upgrading. The **LD292** uses the same hardware and housing for the LD291. The **LD292** is part of SMAR's **Series 302** of Fieldbus devices.

The **LD292**, like its predecessor LD291, has many built-in blocks, eliminating the need for a separate control device. The communication requirement is considerably reduced, and that means less dead-time and tighter control is achieved, not to mention the reduction in cost. They allow flexibility in control strategy implementation.

Get the best results of the LD292 by carefully reading these instructions.

NOTE

This Manual is compatible with version 3.XX, where 3 denotes software version and XX software release. The indication 3.XX means that this manual is compatible with any release of software version 3.

Waiver of responsibility

The contents of this manual abides by the hardware and software used on the current equipment version. Eventually there may occur divergencies between this manual and the equipment. The information from this document are periodically reviewed and the necessary or identified corrections will be included in the following editions. Suggestions for their improvement are welcome.

Warning

For more objectivity and clarity, this manual does not contain all the detailed information on the product and, in addition, it does not cover every possible mounting, operation or maintenance cases.

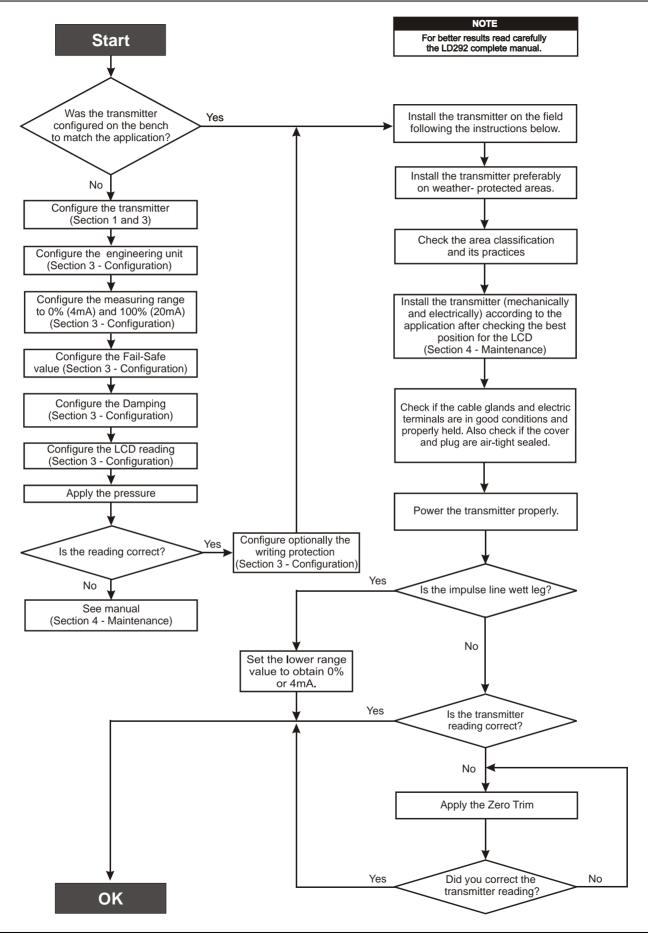
Before installing and utilizing the equipment, check if the model of the acquired equipment complies with the technical requirements for the application. This checking is the user's responsibility.

If the user needs more information, or on the event of specific problems not specified or treated in this manual, the information should be sought from Smar. Furthermore, the user recognizes that the contents of this manual by no means modify past or present agreements, confirmation or judicial relationship, in whole or in part.

All of Smar's obligation result from the purchasing agreement signed between the parties, which includes the complete and sole valid warranty term. Contractual clauses related to the warranty are not limited nor extended by virtue of the technical information contained in this manual.

Only qualified personnel are allowed to participate in the activities of mounting, electrical connection, startup and maintenance of the equipment. Qualified personnel are understood to be the persons familiar with the mounting, electrical connection, startup and operation of the equipment or other similar apparatus that are technically fit for their work. Smar provides specific training to instruct and qualify such professionals. However, each country must comply with the local safety procedures, legal provisions and regulations for the mounting and operation of electrical installations, as well as with the laws and regulations on classified areas, such as intrinsic safety, explosion proof, increased safety and instrumented safety systems, among others.

The user is responsible for the incorrect or inadequate handling of equipments run with pneumatic or hydraulic pressure or, still, subject to corrosive, aggressive or combustible products, since their utilization may cause severe bodily harm and/or material damages.


The field equipment referred to in this manual, when acquired for classified or hazardous areas, has its certification void when having its parts replaced or interchanged without functional and approval tests by Smar or any of Smar authorized dealers, which are the competent companies for certifying that the equipment in its entirety meets the applicable standards and regulations. The same is true when converting the equipment of a communication protocol to another. In this case, it is necessary sending the equipment to Smar or any of its authorized dealer. Moreover, the certificates are different and the user is responsible for their correct use.

Always respect the instructions provided in the Manual. Smar is not responsible for any losses and/or damages resulting from the inadequate use of its equipments. It is the user's responsibility to know and apply the safety practices in his country.

TABLE OF CONTENTS

SECTION 1 - INSTALLATION	1.1
GENERAL	
MOUNTING	
ELECTRONIC HOUSING	
WIRING	
BUS TOPOLOGY AND NETWORK CONFIGURATION	
INTRINSIC SAFETY BARRIER	
JUMPER CONFIGURATION	
POWER SUPPLY	
INSTALLATION IN HAZARDOUS AREAS	
EXPLOSION/FLAME PROOF	
INTRINSICALLY SAFE	
SECTION 2 - OPERATION	2.4
	Z. 1
FUNCTIONAL DESCRIPTION - SENSOR	
FUNCTIONAL DESCRIPTION – ELECTRONICS	
DISPLAY	2.3
SECTION 3 - CONFIGURATION	
TRANSDUCER BLOCK	
HOW TO CONFIGURE A TRANSDUCER BLOCK	
LOWER AND UPPER TRIM	
PRESSURE TRIM - LD292	
VIA LOCAL ADJUSTMENT	
CHARACTERIZATION TRIM	
SENSOR INFORMATION	
TEMPERATURE TRIM	
SENSOR DATA READING	
TRANSDUCER DISPLAY – CONFIGURATION	
DISPLAY TRANSDUCER BLOCK	
DEFINITION OF PARAMETERS AND VALUES	
PROGRAMMING USING LOCAL ADJUSTMENT	
J1 JUMPER CONNECTIONS	
W1 JUMPER CONNECTIONS	
SECTION 4 - MAINTENANCE PROCEDURES	
GENERAL	
DISASSEMBLY PROCEDURE	
SENSOR	
ELECTRONIC CIRCUIT REASSEMBLE PROCEDURE	
SENSOR	
SENSOR ELECTRONIC CIRCUIT	
INTERCHANGEABILITY	
UPGRADING LD291 TO LD292	
RETURNING MATERIALS	
ORDERING CODE FOR HOUSING	
ORDERING CODE FOR SENSOR	
SECTION 5 - TECHNICAL CHARACTERISTICS	
ORDERING CODE	5.5
APPENDIX A - CERTIFICATIONS INFORMATIONS	A.1
EUROPEAN DIRECTIVE INFORMATION	
HAZARDOUS LOCATIONS GENERAL INFORMATION	A 1
HAZARDOUS LOCATIONS CERTIFICATIONS	

APPENDIX B – SRF - SERVICE REQUEST FORM	B.1
CONTROL DRAWING	A.9
IDENTIFICATION PLATE	
IDENTIFICATION PLATES AND CONTROL DRAWINGS	
ASIAN CERTIFICATIONS	
SOUTH AMERICAN CERTIFICATIONS	
EUROPEAN CERTIFICATIONS	
NORTH AMERICAN CERTIFICATIONS	Α2

INSTALLATION

General

NOTE

The installation carried out in hazardous areas should follow the recommendations of the IEC60079-14 standard.

The overall accuracy of level or pressure measurement depends on several variables. Although the transmitter has an outstanding performance, proper installation is essential to maximize its performance.

Among all factors, which may affect transmitter accuracy, environmental conditions are the most difficult to control. There are, however, ways of reducing the effects of temperature, humidity and vibration.

The **LD292** has a built-in temperature sensor to compensate for temperature variations. At the factory, each transmitter is submitted to a temperature cycle process, and the characteristics under different pressures and temperatures are recorded in the transmitter memory. At the field, this feature minimizes the temperature variation effect.

Mounting

Locating the transmitter in areas protected from extreme environmental changes can minimize temperature fluctuation effects.

The transmitter should be installed in such a way as to avoid, as much as possible, direct exposure to the sun or any source of irradiated heat. Installation close to lines and vessels with high temperatures should also be avoided. Use longer sections of impulse piping between tap and transmitter whenever the process fluid is at high temperatures. Use of sunshades or heat shields to protect the transmitter from external heat sources should be considered.

Proper winterization (freeze protection) should be employed to prevent freezing within the measuring chamber, since this will result in an inoperative transmitter and could even damage the cell.

Although the transmitter is virtually insensitive to vibration, installation close to pumps, turbines or other vibrating equipment should be avoided.

The transmitter has been designed to be both rugged and lightweight at the same time. This makes its mounting easier; mounting positions are shown in Figures 1.1 and 1.2.

Should the process fluid contain solids in suspension, install valves or rod-out fittings at regular intervals to clean out the pipes.

The pipes should be internally cleaned by using steam or compressed air, or by draining the line with the process fluid, before such lines are connected to the transmitter (blow-down).

NOTE	Ξ			
When installing or storing the level transmitter, scratching-denting or perforation of its surface.	the diaphragm	must be	protected to	o avoid

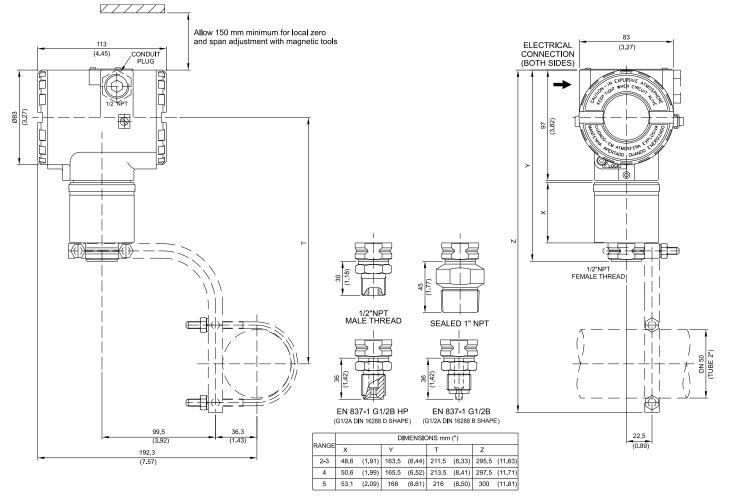


Figure 1.1 (a) - Dimensional Drawing and Mounting Position for LD292

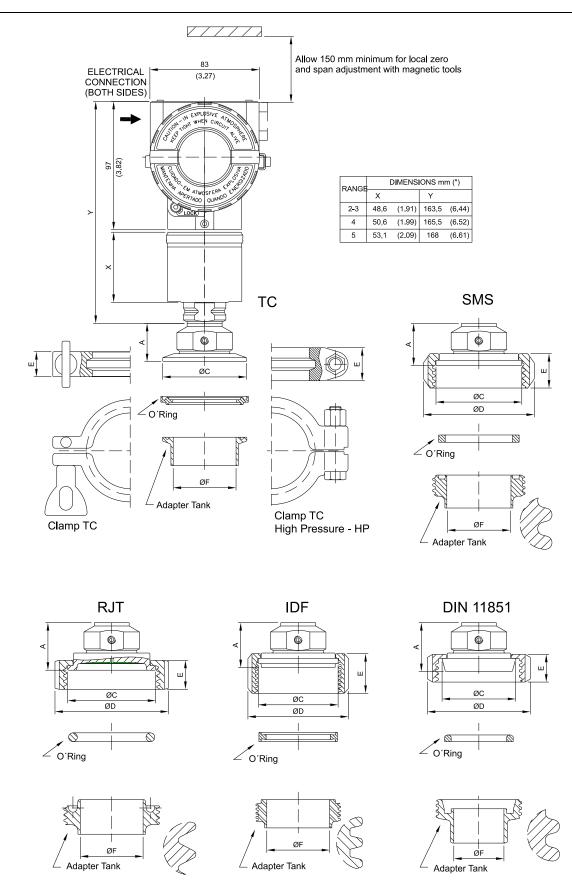
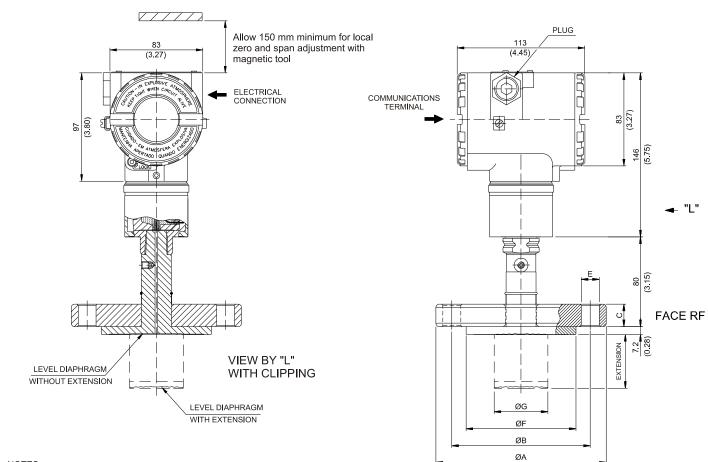



Figure 1.1 (b) - Dimensional Drawing and Mounting Position for LD292 – Sanitary

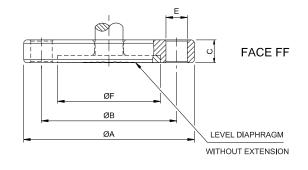

LD290S - CONNECTIONS					
	Dimensions in mm (inche)				
CONNECTION	A	ØC	ØD	E	ØF
Tri-Clamp - 1 1/2" - wihtout extension	27 (1.06)	50 (1.96)	61 (2.40)	18 (0.71)	35 (1.38)
Tri-Clamp - 1 1/2" HP - without extension	27 (1.06)	50 (1.96)	66 (2.59)	25 (0.98)	35 (1.38)
Tri-Clamp - 2" - without extension	29 (1.14)	63,5 (2.50)	76,5 (3.01)	18 (0.71)	47,6 (1.87)
Tri-Clamp - 2" HP - without extension	29 (1.14)	63,5 (2.50)	81 (3.19)	25 (0.98)	47,6 (1.87)
Threaded DN40 - DIN 11851 - without extension	37 (1.46)	56 (2.20)	78 (3.07)	21 (0.83)	38 (1.50)
Threaded DN50 - DIN 11851 - without extension	38 (1.50)	68,5 (2.70)	92 (3.62)	22 (0.86)	50 (1.96)
Threaded SMS - 1 1/2" - without extension	31 (1.22)	55 (2.16)	74 (2.91)	25 (0.98)	35 (1.38)
Threaded SMS - 2" - without extension	32 (1.26)	65 (2.56)	84 (3.30)	26 (1.02)	48,6 (1.91)
Threaded RJT - 2" - without extension	35 (1.38)	66,7 (2.63)	86 (3.38)	22 (0.86)	47,6 (1.87)
Threaded IDF - 2" - without extension	34 (1.34)	60.5 (2.38)	76 (2.99)	30 (1.18)	47,6 (1.87)

Figure 1.1 (c) - Dimensional Drawing and Mounting Position for LD292 - Sanitary

NOTES: -EXTENSION LENGHT mm (in): 0, 50 (1.96), 100 (3.93), 150 (5.9) OR 200 (7.87) -DIMENSIONS ARE mm (in)

	ANSI-B 16.5 DIMENSIONS							
DN	CLASS	А	В	С	E	F (RF) (FF)	G	HOLES
1"	150	108 (4.25)	79.4 (3.16)	14.3 (0.56)	16 (0.63)	50.8 (2)	-	4
	300/600	124 (4.88)	88.9 (3.5)	17.5 (0.69)	19 (0.75)	50.8 (2)	-	4
	150	127 (5)	98.6 (3.88)	20 (0.78)	16 (0.63)	73.2 (2.88)	40 (1.57)	4
1.1/2"	300	155.4 (6.12)	114,3 (4.5)	21 (0.83)	22 (0.87)	73.2 (2.88)	40 (1.57)	4
	600	155.4 (6.12)	114,3 (4.5)	29,3 (1.15)	22 (0.87)	73.2 (2.88)	40 (1.57)	4
	150	152.4 (6)	120.7 (4.75)	17.5 (0.69)	19 (0.75)	92 (3.62)	48 (1.89)	4
2"	300	165.1 (6.5)	127 (5)	20.7 (0.8)	19 (0.75)	92 (3.62)	48 (1.89)	8
	600	165.1 (6.5)	127 (5)	25.4 (1)	19 (0.75)	92 (3.62)	48 (1.89)	8
	150	190.5 (7.5)	152.4 (6)	22.3 (0.87)	19 (0.75)	127 (5)	73 (2.87)	4
3"	300	209.5 (8.25)	168.1 (6.62)	27 (1.06)	22 (0.87)	127 (5)	73 (2.87)	8
	600	209.5 (8.25)	168.1 (6.62)	31.8 (1.25)	22 (0.87)	127 (5)	73 (2.87)	8
	150	228.6 (9)	190.5 (7.5)	22.3 (0.87)	19 (0.75)	158 (6.22)	89 (3.5)	8
4"	300	254 (10)	200 (7.87)	30.2 (1.18)	22 (0.87)	158 (6.22)	89 (3.5)	8
	600	273 (10.75)	215.9 (8.5)	38.1 (1.5)	25 (1)	158 (6.22)	89 (3.5)	8

EN 1092-1 / DIN2501 DIMENSIONS							
PN	А	В	С	E	F	G	HOLES
10/40	115 (4.53)	85 (3.35)	18 (0.71)	14 (0.55)	68 (2.68)	-	4
10/40	150 (5.9)	110 (4.33)	20 (0.78)	18 (0.71)	88 (3.46)	40 (1.57)	4
10/40	165 (6.50)	125 (4.92)	20 (0.78)	18 (0.71)	102 (4.01)	48 (1.89)	4
10/40	200 (7.87)	160 (6.30)	24 (0.95)	18 (0.71)	138 (5.43)	₇₃ (2.87)	8
10/16	220 (8.67)	180 (7.08)	20 (0.78)	18 (0.71)	158 (6.22)	89 (3.5)	8
25/40	235 (9.25)	190 (7.50)	24 (0.95)	22 (0.87)	162 (6.38)	89 (3.5)	8
	10/40 10/40 10/40 10/40 10/16	10/40 115 (4.53) 10/40 150 (5.9) 10/40 165 (6.50) 10/40 200 (7.87) 10/16 220 (8.67)	PN A B 10/40 115 (4.53) 85 (3.35) 10/40 150 (5.9) 110 (4.33) 10/40 165 (6.50) 125 (4.92) 10/40 200 (7.87) 160 (6.30) 10/40 220 (8.67) 180 (7.08)	PN A B C 10/40 115 (4.53) 85 (3.35) 18 (0.71) 10/40 150 (5.9) 110 (4.33) 20 (0.78) 10/40 155 (6.50) 125 (4.92) 20 (0.78) 10/40 200 (7.87) 160 (6.30) 24 (0.95) 10/16 220 (8.67) 180 (7.08) 20 (0.78)	PN A B C E 10/40 115 (4.53) 85 (3.35) 18 (0.71) 14 (0.55) 10/40 150 (5.9) 110 (4.33) 20 (0.78) 18 (0.71) 10/40 155 (6.50) 125 (4.92) 20 (0.78) 18 (0.71) 10/40 200 (7.87) 160 (6.30) 24 (0.95) 18 (0.71) 10/40 202 (8.67) 180 (7.08) 20 (0.78) 18 (0.71)	PN A B C E F 10/40 115 (4.53) 85 (3.35) 18 (0.71) 14 (0.55) 68 (2.68) 10/40 150 (5.9) 110 (4.33) 20 (0.78) 18 (0.71) 88 (3.46) 10/40 165 (6.50) 125 (4.92) 20 (0.78) 18 (0.71) 102 (4.01) 10/40 206 (7.87) 160 (6.30) 24 (0.95) 18 (0.71) 138 (5.43) 10/16 220 (8.67) 180 (7.08) 20 (0.78) 18 (0.71) 138 (5.43)	PN A B C E F G 10/40 115 (4.53) 85 (3.35) 18 (0.71) 14 (0.55) 68 (2.68) - 10/40 150 (5.9) 110 (4.33) 20 (0.78) 18 (0.71) 88 (3.46) 40 (1.57) 10/40 165 (6.50) 125 (4.92) 20 (0.78) 18 (0.71) 102 (4.01) 48 (1.87) 10/40 200 (7.87) 160 (6.30) 24 (0.95) 18 (0.71) 138 (5.43) 73 (2.87) 10/40 200 (7.87) 180 (7.70) 18 (0.71) 138 (6.22) 89 (3.5) 10/40 200 (8.67) 180 (7.8) 18 (0.71) 158 (6.22) 89 (3.5)

Figure 1.1 (d) - Dimensional Drawing and Mounting Position for LD292 – Level

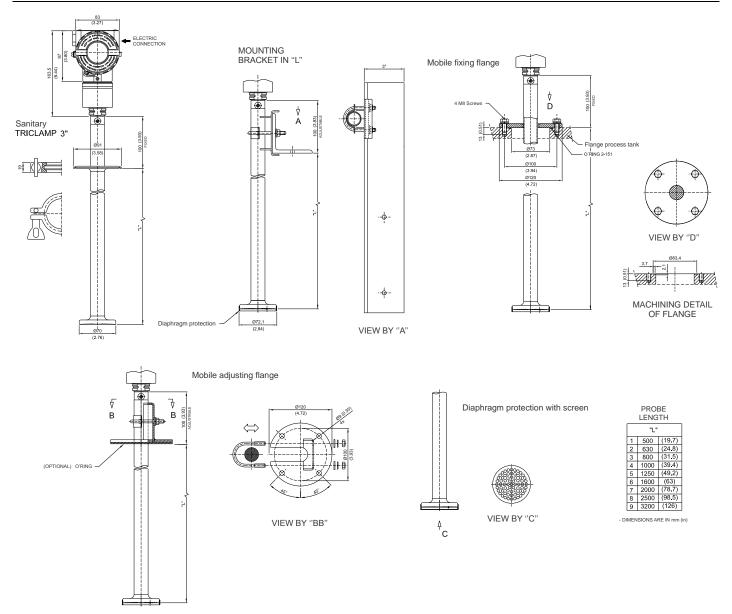


Figure 1.1 (e) - Dimensional Drawing and Mounting Position for LD292 – Level (Insertion)

The figure 1.2 shows how to use the tool to fix the process transmitter tap.

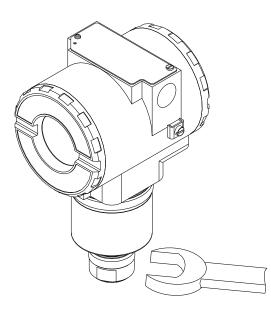
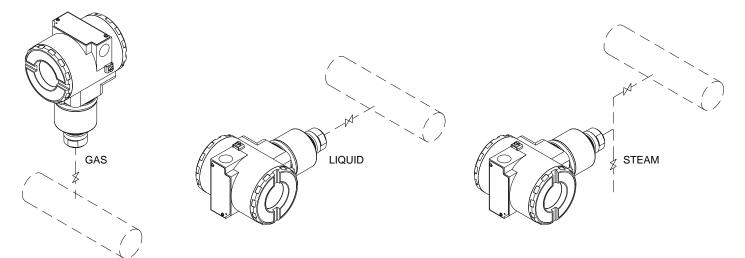
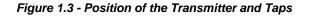


Figure 1.2 – Fixing of the Transmitter in the Tap

Observe operating safety rules during wiring, draining or blow-down.


WARNING		
Normal safety precautions must be taken to avoid the possibility of an accident occurring when operating in conditions of high pressure and/or temperature.		
Electrical shock can result in death or serious injury. Avoid contact with the leads and terminals.		
Process leaks could result in death or serious injury. Do not attempt to loosen or remove flange bolts while the transmitter is in service.		
Replacement equipment or spare parts not approved by Smar could reduce the pressure retaining capabilities of the transmitter and may render the instrument dangerous. Use only bolts supplied or sold by Smar as spare parts.		
Some examples of installation, illustrating the position of the transmitter in relation to the taps, are shown in Figure 1.3.		


The location of pressure taps and the relative position of the transmitter are indicated in Table 1.1.

Process Fluid	Location of Taps	Best Location for the LD292 in Relation to the Taps
Gas	Top or Side	Above the Taps
Liquid	Side	Below the Taps or at the Piping Centrelines
Steam	Side	Below the Taps using Sealing (Condensate) Pots

Table 1.1 - Location of Pressure Taps

NOTE
Except for dry gases, all impulse lines should slope at the ratio 1:10, in order to avoid trapping bubbles in the case of liquids, or condensation from steam or wet gases.

SENSOR IN THE VERTICAL POSITION

NOTE The transmitters are calibrated in the vertical position and a different mounting position displaces the zero point. Consequently, the indicator will indicate a different value from the applied pressure. In these conditions, it is recommended to do the zero pressure trim. The zero trim is to compensate the final assembly position and its performance, when the transmitter is in its final position. When the zero trim is executed, make sure the equalization valve is open and the wet leg levels are correct. For the absolute pressure transmitter, the assembly effects correction should be done using the Lower trim, due to the fact that the absolute zero is the reference for these transmitters, so there is no need for a zero value for the Lower trim. DIAPHRAGM SENSOR

HEAD OF THE FLUI

SENSOR IN THE HORIZONTAL POSITION

DIAPHRAGM SENSOR

Electronic Housing

Humidity is fatal for electronic circuits. In areas subjected to high relative humidity, the O-rings for the electronic housing covers must be correctly placed and the covers must be completely closed by tightening them by hand until the O-rings are compressed. Do not use tools to close the covers. Removal of the electronics cover in the field should be reduced to the minimum necessary, as each time it is removed; the circuits are exposed to the humidity.

The electronic circuit is protected by a humidity proof coating, but frequent exposure to humidity may affect the protection provided. It is also important to keep the covers tightened in place. Every time they are removed, the threads are exposed to corrosion, since painting cannot protect these parts. Code-approved sealing methods should be employed on conduit entering the transmitter.

WARNING

The unused cable entries should be plugged and sealed accordingly to avoid humidity entering, which can cause the loss of the product's warranty.

The electronic housing can be rotated to adjust the digital display on a better position. To rotate it, loose the Housing Rotation Set Screw, see Figure 1.4 (a). To prevent humidity entering, the electric housing and the sensor joint must have a minimum of 6 fully engaged threads. The provided joint allows 1 extra turn to adjust the position of the display window by rotating the housing clockwise. If the thread reaches the end before the desired position, then rotate the housing counterclockwise, but not more than one thread turn. Transmitters have a stopper that restricts housing rotation to one turn. See Section 4, Figure 4.1.

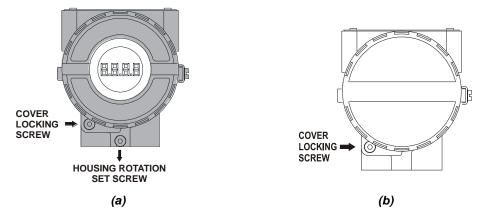


Figure 1.4 - Cover Locking and Housing Rotating Set Screw (a) Electronic Board Side (b) Terminal Connection Side

Wiring

To access the wiring block, loosen the cover locking screw to release the cover. See Figure 1.4 (b).

The **LD292** is protected against reverse polarity, and can withstand ± 35 VDC without damage, and will not work if connected in reverse polarity.

For convenience there are three ground terminals: one inside the cover and two externals, located close to the conduit entries, see figure 1.5.

The **LD292** uses the 31.25 kbit/s voltage mode option for the physical signaling. All other devices on the same bus must use the same signaling. All devices are connected in parallel along the same pair of wires.

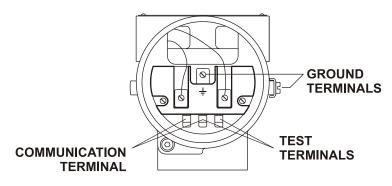


Figure 1.5 - Terminal Block

Various types of Fieldbus devices may be connected on the same bus.

The LD292 current consumption quiescent is 12 mA.

The **LD292** is powered via the bus. The limit for such devices is 16 for one bus for non-intrinsically safe requirement.

The Figure 1.6 shows the correct installation of the conduit, in order to avoid penetration of water, or other substance, which may cause malfunctioning of the equipment.

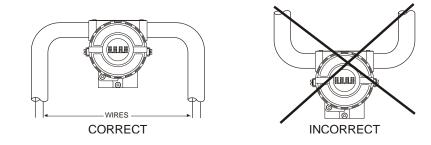
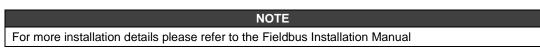



Figure 1.6 - Conduit Installation

Bus Topology and Network Configuration

Other types of cable may be used, other than for conformance testing. Cables with improved specifications may enable longer trunk length or superior interface immunity. Conversely, cables with inferior specifications may be used subject to length limitations for trunk and spurs plus possible nonconformance to the RFI/EMI susceptibility requirements. For intrinsically safe applications, the inductance/ resistance ratio (L/R) should be less than the limit specified by the local regulatory agency for the particular implementation.

Bus topology (See Figure 1.7) and tree topology (See Figure 1.8) are supported. Both types have a trunk cable with two terminations. The devices are connected to the trunk via spurs. The spurs may be integrated in the device giving zero spur length. A spur may connect more than one device, depending on the length. Active couplers may be used to extend spur length. Active repeaters may be used to extend the trunk length.

The total cable length, including spurs, between any two devices in the Fieldbus should not exceed 1900 m.

The connection of couplers should be kept less than 15 per 250 m.

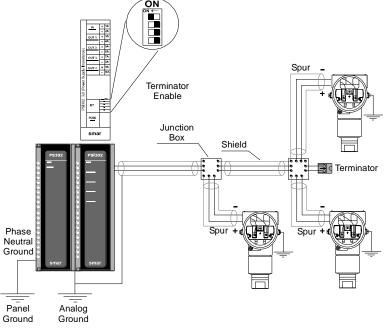


Figure 1.7 - Bus Topology

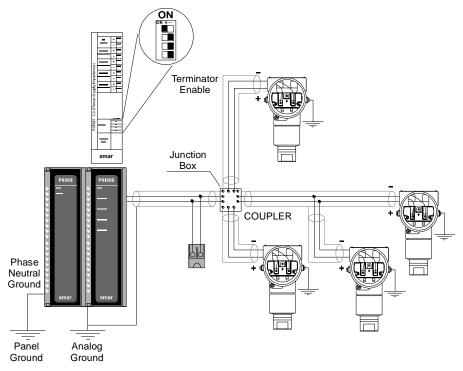


Figure 1.8 - Tree Topology

Intrinsic Safety Barrier

When the Fieldbus is in an area requiring intrinsic safety, a barrier must be inserted on the trunk between the power supply and the transmitters.

Use of SB312LP or DF47 is recommended.

Jumper Configuration

In order to work properly, the jumpers J1 and W1 located in the **LD292** main board must be correctly configured (See Table 1.2).

J1	This jumper enables the simulation mode parameter in the AI block.
W1	This jumper enables the local adjustment programming tree.

Table 1.2 - Description of the Jumpers

Power Supply

The **LD292** receives power from the bus via the signal wiring. The power supply may come from a separate unit or from another device such as a controller or DCS.

The voltage should be between 9 to 32 Vdc for non-intrinsic safe applications.

A special requirement applies to the power supply used in an intrinsically safe bus and depends on the type of barrier used.

Use of **PS302** is recommended as power supply.

Installation in Hazardous Areas

WARNING

Explosions could result in death or serious injury, besides financial damage. Installation of this transmitter in explosive areas must be carried out in accordance with the local standards and the protection type adopted .Before continuing the installation make sure the certificate parameters are I n accordance with the classified area where the equipment will be installed.

The instrument modification or parts replacement supplied by other than authorized representative of Smar is prohibited and will void the certification.

The transmitters are marked with options of the protection type. The certification is valid only when the protection type is indicated by the user. Once a particular type of protection is selected, any other type of protection can not be used.

The electronic housing and the sensor installed in hazardous areas must have a minimum of 6 fully engaged threads. Lock the housing using the locking screw (Figure 1.4).

The cover must be tightened with at least 8 turns to avoid the penetration of humidity or corrosive gases. The cover must be tightened until it touches the housing. Then, tighten more 1/3 turn (120°) to guarantee the sealing. Lock the covers using the locking screw (Figure 1.4).

Consult the Appendix A for further information about certification.

Explosion/Flame Proof

WARNING

Only use Explosion Proof/Flameproof certified Plugs, Adapters and Cable glands.

In Explosion-Proof installations the cable entries must be connected or closed using metal cable gland and metal blanking plug, both with at least IP66 and Ex-d certification.

The standard plugs provided by Smar are certified according to CEPEL certificate. If the plug needs to be replaced, a certified plug must be used.

The electrical connection with NPT thread must use waterproofing sealant. A non-hardening silicone sealant is recommended.

For NEMKO ATEX certificate please to follow the installation guidelines in hazardous locations below: Group II Category 2G, Ex d, Group IIC, Temperature Class T6, EPL Gb U = 28VDC Ambient Temperature: -20 to 60°C for T6 Environmental Protection: IP66/687 or IP66W/687W The electrical connection available are $\frac{1}{2}$ - 14NPT and M20x1,5.

Cable entries must be connected or closed using metal cable gland and metal blanking plug, both with at least IP66 and Ex-d certification or any appropriate ATEX approved metal cable gland and metal blanking plug. Do not remove the transmitter covers when power is ON.

Intrinsically Safe

WARNING

In hazardous zones with intrinsically safe or non-incendive requirements, the circuit entity parameters and applicable installation procedures must be observed.

To protect the application the transmitter must be connected to a barrier. Match the parameters between barrier and the equipment (Consider the cable parameters). Associated apparatus ground bus shall be insulated from panels and mounting enclosures. Shield is optional. If used, be sure to insulate the end not grounded. Cable capacitance and inductance plus Ci and Li must be smaller than Co and Lo of the associated Apparatus.

It is not recommended to remove the transmitter cover when the power is ON.

OPERATION

The **LD292** Series Pressure Transmitters use capacitive sensors (capacitive cells) as pressure sensing elements, as shown in Figure 2.1. This is exactly the same sensor as the LD291 series uses, the sensor modules are therefore interchangeable.

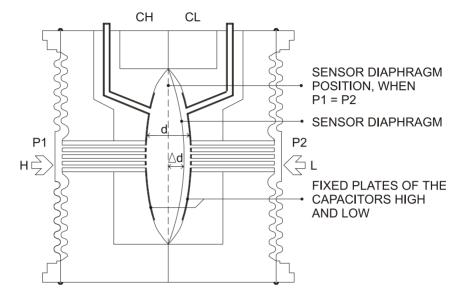


Figure 2.1 - Capacitive Cell

Functional Description - Sensor

Where,

 P_1 and P_2 are the pressures and $P_1 \ge P_2$

CH = Capacitance between the fixed plate on P_1 side and the sensing diaphragm.

CL = Capacitance between the fixed plate on the P₂ side and the sensing diaphragm. d = Distance between CH and CL fixed plates.

 Δd = Sensing diaphragm's deflection due to the differential pressure $\Delta P = P_1 - P_2$.

Knowing that the capacitance of a capacitor with flat, parallel plates may be

$$C \approx \frac{\varepsilon \times A}{d}$$

expressed as a function of plate area (A) and distance (d) between the plates:

Where,

 ε = Dielectric constant of the medium between the capacitor's plates.

$$CH \approx \frac{\varepsilon \times A}{(d/2) + \Delta d}$$
 and $\frac{\varepsilon \times A}{(d/2) - \Delta d} \approx CL$

However, should *CH* and *CL* be considered as capacitances of flat and parallel plates with identical areas, then:

However, should the differential pressure (ΔP) applied to the capacitive cell not deflect the sensing diaphragm beyond d/4, it is possible to assume ΔP as proportional to Δd .

By developing the expression (CL - CH)/(CL + CH), it follows that:

$$\frac{CL - CH}{CL + CH} = \frac{2\Delta d}{d}$$

As the distance (d) between the fixed plates CH and CL is constant. It is possible to conclude that the expression (CL - CH)/(CL + CH) is proportional to Δd and, therefore, to the differential pressure to be measured.

Thus it is possible to conclude that the capacitive cell is a pressure sensor formed by two capacitors whose capacitance vary according to the applied differential pressure.

Functional Description – Electronics

Refer to the block diagram Figure 2.2. The function of each block is described below.

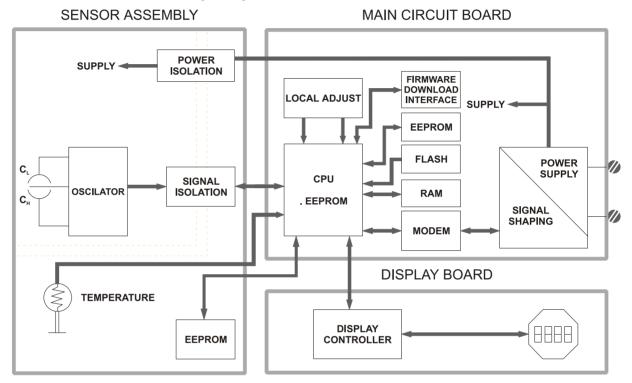


Figure 2.2 - LD292 Block Diagram Hardware

Oscillator

This oscillator generates a frequency as a function of sensor capacitance.

Signal Isolator

The control signals from the CPU and the signal from the oscillator are isolated to avoid ground loops.

Central Processing Unit (CPU), RAM, FLASH and EEPROM

The CPU is the intelligent portion of the transmitter, being responsible for the management and operation of measurement, block execution, self-diagnostics and communication. The program is stored in a FLASH memory for easy upgrade and saving data on power-down event occurrence. For temporary storage of data there is a RAM. The data in the RAM is lost if the power is switched off, however the main board has a nonvolatile EEPROM memory where the static data configured that must be retained is stored. Examples of such data are the following: calibration, links and identification data.

Sensor EEPROM

Another EEPROM is located within the sensor assembly. It contains data pertaining to the sensor's characteristics at different pressures and temperatures. This characterization is done for each sensor at the factory. It also contains the factory settings; they are useful in case of main board replacement, when its does an automatic upload of data from the sensor board to main board.

Fieldbus Modem

Monitors line activity, modulate and demodulate communication signals, inserts and deletes start and end delimiters, and checks integrity of frame received.

Power Supply

Takes power of the loop-line to power the transmitter circuitry.

Power Isolation

Isolates the signals to and from the input section, the power to the input section must be isolated.

Display Controller

Receives data from the CPU identifying which segments on the liquid crystal Display use to turn on. The controller drives the backplane and the segment control signals.

Local Adjustment

There are two switches that are magnetically activated. They can be activated by the magnetic tool without mechanical or electrical contact.

Display

The integral indicator is able to display one or two variables, which are user selectable. When two variables are chosen, the display will alternate between the two with an interval of 3 seconds.

The liquid crystal display includes a field with 4 $\frac{1}{2}$ numeric digits, a field with 5 alphanumeric digits and an information field, as shown on Figure 2.3.

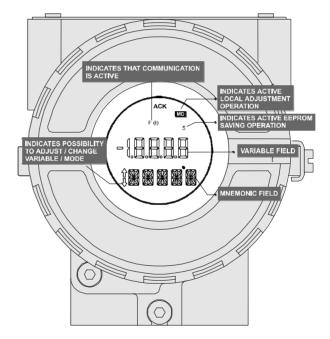


Figure 2.3 - LCD Indicator

CONFIGURATION

One of the many advantages of Fieldbus is that device configuration is independent of the configurator. The **LD292** may be configured by a third party terminal or operator console. Any particular configurator is therefore not addressed here.

This section describes the characteristics of the blocks in the **LD292**. They follow the Fieldbus specifications, but in terms of transducer blocks, the input transducer block and display, they have some special features on top of this.

Transducer Block

Transducer block insulates function block from the specific I/O hardware, such as sensors, actuators. Transducer block controls access to I/O through manufacturer specific implementation. This permits the transducer block to execute as frequently as necessary to obtain good data from sensors without burdening the function blocks that use the data. It also insulates the function block from the manufacturer specific characteristics of certain hardware.

By accessing the hardware, the transducer block can get data from I/O or passing control data to it. The connection between Transducer block and Function block is called channel. These blocks can exchange data from its interface.

Normally, transducer blocks perform functions, such as linearization, characterization, temperature compensation, control and exchange data to hardware.

Rel. Index	Param Mnemonic	Description			
1.	ST_REV	Indicates the level of static data.			
2.	TAG_DESC	Description of Transducer Block.			
3.	STRATEGY	This parameter is not checked and processed by Transducer Block.			
4.	ALERT_KEY Number of identification in the plant.				
5.	MODE_BLK	Indicates the operation mode of Transducer Block.			
6.	BLOCK_ERR	Indicates the status associated with hardware or software in the Transducer.			
7.	UPDATE_EVT	It is the alert for any static data.			
8.	BLOCK_ALM	It is used for configuration, hardware and others fails.			
9.	TRANSDUCER_DIRECTORY	It is used to select several Transducer Blocks.			
10.	TRANSDUCER_TYPE	Indicates the type of Transducer according to its class.			
11.	XD_ERROR	It is used to indicate calibration status.			
12.	COLLECTION_DIRECTORY	Specifies the number of transducer index into Transducer Block.			
13.	PRIMARY_VALUE_TYPE	Defines the calculation type for Transducer Block.			
14.	PRIMARY_VALUE	It is the value and status used by channel.			
15.	PRIMARY_VALUE_RANGE	The High and Low range limit values, the engineering unit code and the number of digits to the right of the decimal point to be used for Primary Value.			
16.	CAL_POINT_HI	The highest calibrated value.			
17.	CAL_POINT_LO	The lowest calibrated value.			
18.	CAL_MIN_SPAN	The minimum calibration span value allowed. This minimum span information is necessary to ensure that when calibration is done, the two calibrated points (high and low) are not too close together.			
19.	CAL_UNIT	The Device Description engineering units code index for the calibration values.			
20.	SENSOR_TYPE	The type of sensor.			
21.	SENSOR_RANGE	The range of sensor.			
22.	SENSOR_SN	The serial number of sensor.			
23.	SENSOR_CAL_METHOD	The method of last sensor calibration. ISO defines several standard methods of calibration. This parameter is intended to record that method, or if some other method was used.			

Rel. Index	Param Mnemonic	Description			
24.	SENSOR_CAL_LOC	The location of last sensor calibration. This describes the physical location at which the calibration was performed.			
25.	SENSOR_CAL_DATE	The date of the last sensor calibration.			
26.	SENSOR_CAL_WHO	The name of person who is in charge of last calibration.			
27.	SENSOR_ISOLATION_MTL	Defines the construction material of the isolating diaphragms.			
28.	SENSOR_FLUID	Defines the type of fill fluid used in the sensor			
29.	SECONDARY_VALUE	The secondary value (temperature value), related to the sensor.			
30.	SECONDARY_VALUE_UNIT	The engineering units to be used with SECONDARY_VALUE.			
31.	PRESS_LIN_NORMAL	The Linear Normalized Pressure value.			
32.	PRESS_NORMAL	The Normalized Pressure value.			
33.	PRESS_CUTOFF	The Cutoff Pressure value.			
34.	CUTOFF_FLAG	The bypass flag for Pressure value.			
35.	DIGITAL_TEMPERATURE	The digital temperature value.			
36.	DIFF	The differential pressure value.			
37.	YDIFF	The y differential pressure value.			
38.	CAPACITANCE_LOW	The low capacitance value.			
39.	CAPACITANCE_HIGH	The high capacitance value.			
40.	BACKUP_RESTORE	This parameter is used to do backup or to restore configuration data.			
41.	SENSOR_RANGE_CODE	Indicates the sensor range code.			
42.	COEFF_POL0	The polynomial coefficient 0.			
43.	COEFF_POL1	The polynomial coefficient 1.			
44.	COEFF_POL2	The polynomial coefficient 2.			
45.	COEFF_POL3	The polynomial coefficient 3.			
46.	COEFF_POL4	The polynomial coefficient 4.			
47.	COEFF_POL5	The polynomial coefficient 5.			
48.	COEFF_POL6	The polynomial coefficient 6.			
49.	COEFF_POL7	The polynomial coefficient 7.			
50.	COEFF_POL8	The polynomial coefficient 8.			
51.	COEFF_POL9	The polynomial coefficient 9.			
52.	COEFF_POL10	The polynomial coefficient 10.			
53.	COEFF_POL11	The polynomial coefficient 11.			
54.	POLYNOMIAL_VERSION	Indicates the polynomial version.			
55.	CHARACTERIZATION_TYPE	Indicates the type of characterization curve.			
56.	CURVE _BYPASS_LD	Enable and disable the characterization curve.			
57.		Indicates the length of characterization curve.			
58.		Input points of characterization curve.			
59.		Output points of characterization curve.			
60.		Indicates the backup for high calibration point.			
61.		Indicates the backup for low calibration point.			
62.		Indicates the factory high calibration point.			
63. 64.	CAL_POINT_LO_FACTORY	Indicates the factory low calibration point.			
64. 65.	CAL_TEMPERATURE DATASHEET	Defines the temperature calibration point. Indicates information about the sensor.			
65. 66.	ORDERING_CODE	Indicates information about the sensor. Indicates information about the sensor and control from factory production.			
67.	MAXIMUM_MEASURED_PRESSURE	Indicates mormation about the sensor and control normactory production.			
68.					
		Indicates the maximum temperature measured			
69. 70	ACTUAL_OFFSET	Indicates the actual calibrated offset			
70.	ACTUAL_SPAN	Indicates the actual span offset			

Rel. Index	Param Mnemonic	Description			
71.	MAXIMUM_OFFSET_DEVIATION	Defines the maximum offset before an alarm is generate			
72.	MAXIMUM_GAIN_DEVIATION	Defines the maximum gain before an alarm is generate			
73.	OVERPRESSURE_LIMIT	Defines the maximum overpressure limit before an alarm is generate			
74.	MAXIMUM_NUMBER_OF_OVERPRESSURE	Defines the maximum number of overpressure before an alarm is generate			

Rel. Index	Param Mnemonic	Obj. Type	Data Type	Store	Size	Valid Range	Initial/ Default Value	Units	Class	View
1.	ST_REV	S	Unsigned16	S	2	Positive	0	none	R/W	1,2,3,4
2.	TAG_DESC	S	VisibleString	S	32		TRD BLOCK	na	R/W	
3.	STRATEGY	S	Unsigned16	S	2		0	none	R/W	4
4.	ALERT_KEY	S	Unsigned8	S	1	1-255	0	na	R/W	4
5.	MODE_BLK	R	DS-69	S	4	OS,AUTO	O/S	none	R/W	1,3
6.	BLOCK_ERR	S	Bit String	D	2			ш	R	1,3
7.	UPDATE_EVT	R	DS-73	D	5			na	R	
8.	BLOCK_ALM	R	DS-72	D	13			na	R	
9.	TRANSDUCER_DIRECTORY	S	Array of Unsigned16	Ν	Variable			none	R	
10.	TRANSDUCER_TYPE	S	Unsigned16	Ν	2		100	none	R	1,2,3,4
11.	XD_ERROR	S	Unsigned8	D	1		0	none	R	1,3
12.	COLLECTION_DIRECTORY	S	Array of Unsigned 32	S	Variable			None	R	
13.	PRIMARY_VALUE_TYPE	S	Unsigned16	S	2		107	None	R/W	2
14.	PRIMARY_VALUE	R	DS-65	D	5		0	XD_SCALE	R	1,3
15.	PRIMARY_VALUE_RANGE	R	DS-68	S	11	0-100%		XD_SCALE	R	4
16.	CAL_POINT_HI	S	Float	S	4		5080.0	CAL_UNIT	R/W	2
17.	CAL_POINT_LO	S	Float	s	4		0.0	CAL_UNIT	R/W	2
18.	CAL_MIN_SPAN	S	Float	S	4	URL/40 to URL	0.0	CAL_UNIT	R	4
19.	CAL_UNIT	S	Unsigned16	S	2		1149	E	R	4
20.	SENSOR_TYPE	S	Unsigned16	S	1		117	na	R/W	4
21.	SENSOR_RANGE	R	DS-68	S	11		0-100%	XD_SCALE	R	4
22.	SENSOR_SN	S	Unsigned32	S	4	0 to 2 ³²	0	None	R/W	4
23.	SENSOR_CAL_METHOD	S	Unsigned8	S	1		103	none	R/W	4
24.	SENSOR_CAL_LOC	S	VisibleString	S	32		NULL	none	R/W	
25.	SENSOR_CAL_DATE	S	Time of Day	S	7			none	R/W	
26.	SENSOR_CAL_WHO	S	VisibleString	S	32		NULL	none	R/W	
27.	SENSOR_ISOLATION_MTL	S	Unsigned16	S	2		2	none	R/W	4
28.	SENSOR_FLUID	S	Unsigned16	S	2		1	none	R/W	4
29.	SECONDARY_VALUE	R	DS-65	D	5		0	SVU	R	1,3
30.	SECONDARY_VALUE_UNIT	S	Unsigned16	S	2		1001	E	R	2
31.	PRESS_LIN_NORMAL	R	DS-65	D	5	± 1	0	none	R	3
32.	PRESS_NORMAL	R	DS-65	D	5	± 1	0	none	R	3
33.	PRESS_CUTOFF	R	DS-65	D	5	± 1	0	none	R	
34.	CUTOFF_FLAG	S	Unsigned8	S	1	True/False	True	none	R/W	
35.	DIGITAL_TEMPERATURE	R	DS-65	D	5	0-255	0	none	R	3

LD292 - Operation and Maintenance Instruction Manual

Rel. Index	Param Mnemonic	Obj. Type	Data Type	Store	Size	Valid Range	Initial/ Default Value	Units	Class	View
36.	DIFF	S	Float	D	4		0	none	R	3
37.	YDIFF	S	Float	D	4		0	none	R	3
38.	CAPACITANCE_LOW	S	Float	D	4		0	none	R	3
39.	CAPACITANCE_HIGH	S	Float	D	4		0	none	R	3
40.	BACKUP_RESTORE	S	Unsigned8	S	1		0	none	R/W	4
41.	SENSOR_RANGE_CODE	S	Unsigned16	S	2		1	none	R/W	4
42.	COEFF_POL0	S	Float	S	4	\pm INF	-1	none	R/W	4
43.	COEFF_POL1	S	Float	S	4	± INF	0	none	R/W	4
44.	COEFF_POL2	S	Float	S	4	\pm INF	1	none	R/W	4
45.	COEFF_POL3	S	Float	S	4	$\pm INF$	0	none	R/W	4
46.	COEFF_POL4	S	Float	S	4	\pm INF	2	none	R/W	4
47.	COEFF_POL5	S	Float	S	4	\pm INF	0	none	R/W	4
48.	COEFF_POL6	S	Float	S	4	\pm INF	0	none	R/W	4
49.	COEFF_POL7	S	Float	S	4	\pm INF	0	none	R/W	4
50.	COEFF_POL8	S	Float	S	4	\pm INF	0	none	R/W	4
51.	COEFF_POL9	S	Float	S	4	\pm INF	0	none	R/W	4
52.	COEFF_POL10	S	Float	S	4	\pm INF	0	none	R/W	4
53.	COEFF_POL11	S	Float	S	4	\pm INF	25	none	R/W	4
54.	POLYNOMIAL_VERSION	S	Unsigned8	S	1	30h to FFh	32	None	R/W	4
55.	CHARACTERIZATION_TYPE	S	Unsigned8	S	1		255	None		2
56.	CURVE _BYPASS_LD	S	Unsigned16	S	2		Enable& Backup	None	R/W	2
57.	CURVE_LENGTH	S	Unsigned8	S	1	2 to 5	5	None	R/W	2
58.	CURVE_X	R	Array of Float	S	20			None	R/W	2
59.	CURVE_Y	R	Array of Float	S	20			None	R/W	2
60.	CAL_POINT_HI_BAKUP	s	Float	S	4		5080	CAL_UNIT	R	2
61.	CAL_POINT_LO_BAKUP	S	Float	S	4		0	CAL_UNIT	R	2
62.	CAL_POINT_HI_FACTORY	S	Float	S	4		5080	CAL_UNIT	R	
63.	CAL_POINT_LO_FACTORY	S	Float	S	4		0	CAL_UNIT	R	
64.	CAL_TEMPERATURE	S	Float	S	4	-40 a 85 °C	17.496	°C	R/W	
65.	DATASHEET	R	Array of Unsigned8	S	10			None	R/W	
66.	ORDERING_CODE	S	VisibleString	S	50		NULL	None	R/W	
67.	MAXIMUM_MEASURED_PRES	S	Float	S	4	$\pm INF$	- INF	none	R/w	
68.	MAXIMUM_MEASURED_TEMP ERATURE	S	Float	S	4	± INF	- INF	none	R/W	
69.	ACTUAL_OFFSET	S	Float	S	4	± INF		none	R	
70.	ACTUAL_SPAN	S	Float	S	4	± INF		none	R	
71.	MAXIMUM_OFFSET_DEVIATIO	S	Float	S	4	± INF	0.5	none	R/W	
72.	MAXIMUM_GAIN_DEVIATION	S	Float	S	4	± INF	2.0	none	R/W	
73.	OVERPRESSURE_LIMIT	S	Float	S	4	± INF	+ INF	none	R/W	
74.	MAXIMUM_NUMBER_OF_OVE RPRESSURE	S	Float	S	4	$\pm INF$	0	none	R/W	

How to Configure a Transducer Block

Each time when you select a field device on **SYSCON** by instantiating on the Operation menu, automatically you instantiate one transducer block and it appears on screen.

The icon indicates that one transducer block has been created and by clicking twice on the icon, you can access it.

The transducer block has an algorithm, a set of contained parameters and a channel connecting it to a function block.

The algorithm describes the behavior of the transducer as a data transfer function between the I/O hardware and other function block. The set of contained parameters, it means, you are not able to link them to other blocks and publish the link via communication, defines the user interface to the transducer block. They can be divided into Standard and Manufacturer Specific.

The standard parameters will be present for such class of device, as pressure, temperature, actuator, etc., whatever is the manufacturer. Oppositely, the manufacturers specific ones are defined only for its manufacturer. As common manufacturer specific parameters, we have calibration settings, material information, linearization curve, etc.

When you perform a standard routine as a calibration, you are conducted step by step by a method. The method is generally defined as guide line to help the user to make common tasks. The **SYSCON** identifies each method associated to the parameters and enables the interface to it.

The SYSCON configuration software can configure many parameters of the Input Transducer block.

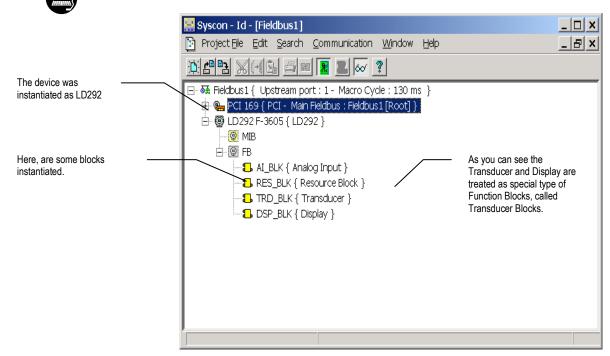


Figure 3.1 - Function and Transducers Blocks

Lower and Upper Trim

Each sensor has a characteristic curve that establishes a relation between the applied pressure and the sensor signal. This curve is determined for each sensor and it is stored in a memory together with the sensor. When the sensor is connected to the transmitter circuit, the content of its memory is made available to the microprocessor.

Sometimes the value on the transmitter display and transducer block reading may not match the applied pressure.

The reasons may be:

- The transmitter mounting position.
- The user's pressure standard differs from the factory standard. .
- The transmitter had its original characterization shifted by over pressurization, over heating or • by long term drift.

NOTE

Check on section 1, the note on the influence of the mounting position on the indicator.

For better accuracy, the trim adjustment should be made in the in the lower and upper values of the operation range values.

The **TRIM** is used to match the reading with the applied pressure.

There are three types of trim available:

Lower Trim: It is used to trim the reading at the lower range. The operator informs the LD292 the correct reading for the applied pressure. The most common discrepancy is the lower reading.

Upper Trim: It is used to trim the reading at the upper range. The operator informs the correct reading to LD292 for the applied pressure.

For best accuracy, trim should be done at the operating range. The Figure 3.2 - LD292 SYSCON -Transducer Configuration Screen, Figure 3.3 - LD292 SYSCON - Transducer Configuration Screen and Figure 3.4 - LD292 SYSCON - Transducer Configuration Screen below show the trim adjustment operation into SYSCON.

Pressure Trim - LD292

Via SYSCON

It is possible to calibrate the transmitter by means of parameters CAL_POINT_LO and CAL_POINT_HI.

First of all, a convenient engineering unit should be chosen before starting the calibration. This engineering unit is configured by CAL_UNIT parameter. After its configuration the parameters related to calibration will be converted to this unit.

	On Line: LD292 F-3605 - Transducer - TRD_BLK	×
meter – IT should be d according to neering Unit or calibrating the		The Engineering Units can be choosen from the Pressure Units list box.
	-SENSOR_SN MPa -SENSOR_CAL_METHOD Pa -SENSOR_CAL_LOC -SENSOR_CAL_DATE <unespecified> -SENSOR_CAL_WHO -SENSOR_ISOLATION_MTL 316_Stainless_Steel</unespecified>	After the selection this key should be
	CAL_UNIT: Engineering units code for the calibration values.	operation
	Cancel Edit End Edit Close Help	

Figure 3.2 - LD292 SYSCON – Transducer Configuration Screen

There are the following engineering units for pressure according to Foundation Fieldbus[®] standard:

The para CAL_UNI configure the Engin wished fo device.

Units	Code
inH₂O a 68 °F	1148
inHg a 0 °C	1156
ftH₂O a 68 °F	1154
mmH₂O a 68 °F	1151
mmHg_a_0 °C	1158
psi	1141
bar	1137
mbar	1138
g/cm ²	1144
k/cm ²	1145
Pa	1130
kPa	1133
torr	1139
atm	1140
MPa	1132
inH₂O a 4 °C	1147
mmH ₂ O a 4 °C	1150

Table 3.3 - Engineering Units for Pressure

CAL_UNIT allows the user to select different units for calibration purposes than the units defined by SENSOR_RANGE. The SENSOR_RANGE parameter defines the maximum and minimum values the sensor is capable of indicating, the engineering units used, and the decimal point.

Let's take the lower value as an example:

Apply to the input zero or the pressure lower value in an engineering unit, this being the same used in parameter CAL_UNIT, and wait until the readout of parameter PRIMARY_VALUE stabilizes.

Write zero or the lower value in parameter CAL_POINT_LO. For each value written a calibration is performed at the desired point.

	0	n Line: LD292 F-3605 - Transd	lucer - TRD_BLK	_		
The Lower Range		s > < 🕸 🗗 🗸 📥 💇 [— For its case, a
Value should be entered. This value must be inside of the Sensor range limits allowed for each type of sensor.		Parameter Parameter Parameter CAL_POINT_LI CAL_POINT_LO CAL_UNIT SENSOR_TYPE SENSOR_CAL_VIT SENSOR_CAL_CC SENSOR_CAL_DC SENSOR_CAL_DC SENSOR_CAL_DATE SENSOR_CAL_DATE SENSOR_CAL_DATE SENSOR_CAL_MHO SENSOR_CAL_DATE CE CE CE CE CE CE CE CE CE		mber of digits to the right of th Close Help	~	sensor range 2 is used: The URL is 605.29846 mmH2O or 24.21193 inH2O.

Figure 3.3 - LD292 SYSCON - Transducer Configuration Screen

Let's take the upper value as an example:

Apply to the input as the upper value a pressure of 5,080mmH₂O and wait until the readout of parameter PRIMARY_VALUE stabilizes. Then, write the upper value as, for example, 5,000mmH₂O in parameter CAL_POINT_HI. For each value written a calibration is performed at the desired point.

The Upper - Range Value should be	On Line: LD292 F-3605 - Transducer - TRD_BLK ● </th <th>For its case, a sensor range 2 is</th>	For its case, a sensor range 2 is
entered. This value must be inside of the Sensor range limits allowed for each type of sensor.	Parameter Value B-PRIMARY_VALUE_RANGE GAL_POINT_HI CAL_POINT_LO 0 -CAL_MIN.SPAN 127 -CAL_UNIT mmH20 (68*F) -SENSOR_TYPE Capacitance B-SENSOR_RANGE -SENSOR_CAL_METHOD -SENSOR_CAL_LOC -SENSOR_CAL_LOC -SENSOR_CAL_DATE -SENSOR_CAL_WHO -SENSOR_CAL_WHO -SENSOR_CAL_WHO -SENSOR_CAL_WHO -SENSOR_CAL_WHO -SENSOR_CAL_WHO -SENSOR_CAL_WHO -SENSOR_CAL_SOLATION MTL 316_Stainless_Steel	used: The URL is 5080 mmH2O or 200 inH2O.
	SENSOR_ISOLATION_MTL 316_Steinless_Steel	

Figure 3.4 - LD292 SYSCON - Transducer Configuration Screen

WARNING It is recommendable that a convenient engineering unit be chosen by means of parameter XD_SCALE of the Analog Input Block, considering that the range limits of the sensor must be respected, these being 100% and 0%.

It is also recommendable, for every new calibration, to save existing trim data in parameters CAL_POINT_LO_BACKUP and CAL_POINT_HI_BACKUP, by means of parameter BACKUP_RESTORE, using option LAST_TRIM_BACKUP.

Via Local Adjustment

In order to enter the local adjustment mode, place the magnetic tool in office "Z" until flag "MD" lights up in the display. Remove the magnetic tool from "Z" and place it in orifice "S". Remove and reinsert the magnetic tool in "S" until the message "LOC ADJ" is displayed. The message will be displayed during approximately 5 seconds after the user removes the magnetic tool from "S". Let's take the upper value as an example:

Apply to the input a pressure of 5,000 mmH₂O. Wait until the pressure of readout of parameter P_VAL (PRIMARY_VALUE) stabilizes and then actuates parameter UPPER until it reads 5,000.

NOTE

Trim mode exit via local adjustment occurs automatically should the magnetic tool not be used during approximately 16 seconds.

Keep in that even when parameters LOWER or UPPER already present the desired value, they must be actuated so that calibration is performed.

Limit Conditions for Calibration:

For every writing operation in the transducer blocks there is an indication for the operation associate with the waiting method. These codes appear in parameter XD_ERROR. Every time a calibration is performed. Code 0, for example, indicates a successfully performed operation.

Upper:

SENSOR_RANGE_EUO < NEW_UPPER < SENSOR_RANGE_EU100 * 1.25 Otherwise, XD_ERROR = 26. (NEW_UPPER - PRIMARY_VALUE) < SENSOR_RANGE_EU100 * 0.1 Otherwise, XD_ERROR = 27. (NEW_UPPER - CAL_POINT_LO) >CAL_MIN_SPAN * 0,75 Otherwise, XD_ERROR = 26. Codes for XD_ERROR: Default Value Set Out of Range. Invalid Calibration Request. Excessive Correction.

Characterization Trim

It is used to correct the sensor reading in several points.

Use an accurate and stable pressure source, preferably a dead-weight tester, to guarantee the accuracy must be at least three times better than the transmitter accuracy. Wait for the pressure to stabilize before performing trim.

NOTE

The sensor characteristic curve at a certain temperature and for certain ranges may be slightly nonlinear. This eventual non-linearity may be corrected through the Characterization Trim.

The user may characterize the transmitter throughout the operating range, obtaining even better accuracy.

The characterization is determined from two up to five points. Just apply the pressure and tell the transmitter the pressure that is being applied.

WARNING

The characterization trim changes the transmitter characteristics.

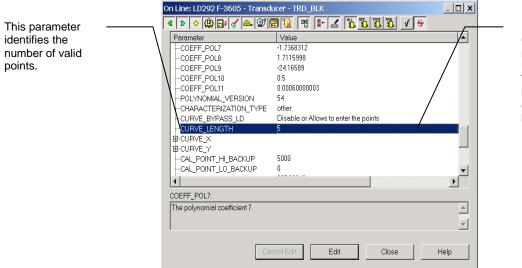
Read the instructions carefully and certify that a pressure standard with accuracy 0.03% or better is being used, otherwise the transmitter accuracy will be seriously affected.

Characterize a minimum of two points. These points will define the characterization curve. The maximum number of points is five. It is recommended to select the points equally distributed over the desired range or over a part of the range where more accuracy is required.

The Figure 3.5 - The Characterization Curve Configuration shows the window of SYSCON to characterize a new curve. Note that CURVE_X indicates the applied pressure according to standard pressure source and CURVEX_Y indicates measured pressure value to **LD292**.

The number of points is configured in parameter CURVE_LENGTH, being in the maximum 5 points. The entry points will be configured in the CURVE_X and of output in the CURVE_Y.

The Parameter CURVE_BYPASS_LD controls the enabling/disabling of the curve and has the following options:


- "Enable and Restore Cal ",
- "Enable and Backup Cal " ,
- "Disable and Restore Cal ",
- "Disable or Allows to enter the points"

To configure the points of the curve, the option "**Disable or Allows to enter the points** " must be choosen. Apply the desired pressure and wait that the same one stabilizes. When stabilizing to read the pressure normalized through parameter PRESS_NORMAL and then to write in CURVE_X and CURVE_Y, the normalized pressure and the applied pressure, respectively. Finally is necessary to write in the CURVE_LENGTH parameter, the number of configured points, from 2 to 5 points. In case you do not desire to qualify the curve, please, choose the option " Disable and Restore Cal". For enabling and save the calibration settings, please, choose "Enable and Backup Cal".

On Line: LD292 F-3605 - Transdi	ucer - TRD_BLK		
Development Developme	Image: Constraint of the state of		By the list box the user can enable or disable the Characterization Curve, enter the points, restore or backup the curve entered. This parameter should be used preferable by a method of calibration.
		 Help	
	Parameter COEFF_POL7 COEFF_POL8 COEFF_POL9 COEFF_POL10 COEFF_POL10 COEFF_POL11 POLYNOMIAL_VERSION CHARACTERIZATION_TYPE CURVE_BYPASS_LD CURVE_Y CAL_POINT_HI_BACKUP CAL_POINT_HI_BACKUP CAL_POINT_LO_BACKUP	Parameter Value -COEFF_POL7 -1.7368312 -COEFF_POL8 1.7115998 -COEFF_POL9 -2416589 -COEFF_POL10 0.5 -CURVE_SY Disable or Allows to enter the points -CURVE_Y Disable and Restore Cal B-CURVE_Y Disable or Allows to enter the points -CAL_POINT_HI_BACKUP 0 -CAL_POINT_LO_BACKUP 0 -CAL_POINT_LO_BACKUP 0 -CAL_POINT_LO_BACKUP 0	COEFF_POL7 -1.7368312 -COEFF_POL8 1.7115998 -COEFF_POL9 -24.16589 -COEFF_POL10 0.5 -COEFF_POL11 0.00060000003 -POLYNOMIAL_VERSION 54 CHARACTERIZATION_TYPE other -CURVE_BYPASS_LD Disable or Allows to enter the points CURVE_Y Disable and Restore Cal Diverse Cal CURVE_Y Disable and Restore Cal CURVE_Y CAL_POINT_HL_BACKUP CAL_POINT_L0_BACKUP CURVE_STPASS_LD: Enable and disable the characterization curve.

Figure 3.5 - The Characterization Curve Configuration

Its Characterization Curve can have a minimum of 2 and up to 5 points. These points should be between the calibrated range for better results.

Figure 3.6 - The Characterization Curve Configuration

Sensor Information

This parameter

assigns the E.U. for all parameters

related to calibration

they start their names

methods. Normally,

with CAL_

The main information about the transmitter can be accessed selecting the Transducer block icon option as shown on the *Figure 3.10 – Creating Transducers and Function Blocks*. The sensor information will be displayed as shown below.

Parameter	📆 💘 📑 🛃 🖺 🖪 🖪 🗸 🖇	\sim			
CAL_POINT_LO					
CAL_MIN_SPAN	127				
CAL_UNIT	mmH2O (68°F)				
-SENSOR_TYPE	Capacitance				
B-SENSOR_RANGE					
-SENSOR_SN	22527				
-SENSOR_CAL_METHOD Factory standard calibration					
-SENSOR_CAL_LOC					
-SENSOR_CAL_DATE	<unespecified></unespecified>				
-SENSOR_CAL_WHO					
-SENSOR_ISOLATION_MTL	316_Stainless_Steel				
-SENSOR_FLUID	Silicone				
SECONDARY_VALUE					
•					
SECONDARY_VALUE:					
The secondary value related to the	e sensor.				

The appropriate calibration unit can be chosen by selecting the Engineering Units available for each type of Transducer Block

Figure 3.7 - Transducer Block - Sensor Information

Only application dependent options defined by combo boxes can be changed. (E.g. Flange Type, O' Ring Material, etc.) And the others are only factory configured (e.g. Sensor Isolating Diaphragm, Sensor Fluid, etc.).

Temperature Trim

By adjusting this parameter to the current temperature, the device's temperature indication is adjusted. Write in parameter TEMPERATURE_TRIM any value in the range -40°C to +85°C. After that, check the calibration performance using parameter SECONDARY_VALUE.

On Line: LD292 F-3605 - Transducer - TRD_BLK		
< > < # / < < / >		
Parameter Value -POLYNOMIAL_VERSION 54 -CHARACTERIZATION_TYPE other -CURVE_BYPASS_LD Disable or Allows to enter the points -CURVE_LENGTH 5 B-CURVE_X B-CURVE_Y -CAL_POINT_HL_BACKUP 0 -CAL_POINT_LO_BACKUP 0 -CAL_POINT_LO_FACTORY 605 29846 -CAL_POINT_LO_FACTORY 506 10968 CAL_TEMPERATURE 25 B-DEVICE_DATASHEET -ORDERING_CODE Imdicates the type of characterization curve. Cancel Edit	A Help	Normally, its operation is done by a method in the factory.

Figure 3.8 - The Temperature Trim Configuration

Sensor Data Reading

All time that transmitter LD292 is on, is verified if the serial number of the sensor in the sensor board is the same that the recorded serial number in E2PROM in the main board. When these numbers are different (a swap of sensor set or main board was carried through) the data stored in the E2PROM of sensor board is copied to the E2PROM of the main board.

Through the parameter BACKUP_RESTORE, also this reading can be made, choosing the option "SENSOR_DATA_RESTORE". The operation, in this case, is made independent of the sensor serial number. Through the option "SENSOR_DATA_BACKUP", the sensor data stored in the main board Eeprom memory can be saved in the E2PROM of the sensor board. (This operation is done at factory).

Through this parameter, we can recover default data from factory about sensor and last saved calibration settings, as well as making the rescue of calibrations. We have the following options:

- Recover last calibration settings made at factory; • Factory Cal Restore: Recover last calibration settings made by user and saved as backup;
- Last Cal Restore:
- Default Data Restore:
- Sensor Data Restore:

Restore all data as default: Restore sensor data saved in the sensor board and copy them to main board Eeprom memory.

- Factory Cal Backup: Copy the actual calibration settings to the factory ones;
- Last Cal Backup:

• None:

- Sensor Data Backup:
- Copy the actual calibration settings to the backup ones;
 - Copy the sensor data at main board Eeprom memory to the Eeprom memory located at the sensor board;
 - Default value, no action is done.

This parameter is used to save or restore the default, factory or user configuration stored at the sensor module.

Parameter	P P	By selecting the options contained in the list box, operations of backup and restore data in the sensor module can be selected.
COEFF_POL6 -COEFF_POL7 A BACKUP_RESTORE:	-0.05626484 -1.7368312	Using its option, the user can save his last calibration settings.

Figure 3.9 - Transducer Block - Backup/Restore

Transducer Display – Configuration

Using the SYSCON is possible to configure the Display Transducer block. As the name described it is a transducer due the interfacing of its block with the LCD hardware.

The Transducer Display is treated as a normal block by **SYSCON**. It means, this block has some parameters and those ones can be configured according to customer's needs. (See the *Figure 3.10* – *Creating Transducers and Function Blocks*).

The customer can choose the parameters to be shown at LCD display, they can be parameters just for monitoring purpose or for acting locally in the field devices by using a magnetic tool.



Figure 3.10 – Creating Transducers and Function Blocks

Display Transducer Block

The local adjustment is completely configured by **SYSCON**. It means, the user can select the best options to fit his application. From factory, it is configured with the options to set the Upper and Lower trim, for monitoring the input transducer output and check the Tag. Normally, the transmitter is much better configured by **SYSCON**, but the local functionality of the LCD permits an easy and fast action on certain parameters, since it does not rely on communication and network wiring connections. Among the possibilities by Local Adjustment, the following options can be emphasized: Mode block, Outputs monitoring, Tag visualization and Tuning Parameters setting.

The interface between the user is described very detailed on the "General Installation, Operation and Maintenance Procedures Manual". Please take a detailed look at this manual in the chapter related to "Programming Using Local Adjustmen<u>f</u>". It is significantly the resources on this transducer display, also all the **Series 302** field devices from SMAR has the same methodology to handle with it. So, since the user has learned once, he is capable to handle all kind of field devices from SMAR.

All function block and transducers defined according Foundation Fieldbus[™] have a description of their features written on binary files, by the Device Description Language.

This feature permits that third parties configurator enabled by Device Description Service technology can interpret these features and make them accessible to configure. The Function Blocks and Transducers of Series 302 have been defined rigorously according the Foundation Fieldbus specifications in order to be interoperable to other parties.

In order to able the local adjustment using the magnetic tool, it is necessary to previously prepare the parameters related with this operation via SYSCON (System Configuration). The Figure 3.8 - The Temperature Trim Configuration and the Figure 3.9 - Transducer Block. All values shown on the display are default values.

There are seven groups of parameters, which may be pre-configured by the user in order to able, a possible configuration by means of the local adjustment. As an example, let's suppose that you don't want to show some parameters; in this case, simply write an invalid Tag in the parameter, Block_Tag_Param_X. Doing this, the device will not take the parameters related (indexed) to its Tag as a valid parameters.

DataType Valid Range/ Default ldx Units Store Parameter Description Options Value (length) This is a tag of the block to which the 7 BLOCK_TAG_PARAM VisibleString None S parameter belongs to use up to a maximum of 32 characters. This is the index related to the parameter 8 Unsigned16 0-65535 S INDEX_RELATIVE None to be actuated or viewed (1, 2...). To visualize a certain tag, opt for the index 9 SUB_INDEX Unsigned8 1-255 S relative equal to zero, and for the sub-None index equal to one. This is the mnemonic for the parameter identification (maximum of 16 characters). 10 **MNEMONIC** VisibleString None S Choose the mnemonic, preferably with no more than 5 characters because, this way, it will not necessary to rotate it on display. It is the increment and decrement in decimal units when the parameter is Float 11 INC_DEC Float None S or Float Status time, or integer, when the parameter is in whole units. This is the number of digits after the S 12 DECIMAL_POINT_NUMBER Unsigned8 0-4 None decimal point (0 to 3 decimal digits) The access allows the user to read, in the case of the "Monitoring" option, and to write when "action" option is selected, and 13 ACCESS Unsigned8 Monit/Action None then the display will show the increment and decrement arrows. These parameters include two options: value and mnemonic. In option value it is possible to display data both in the 14 Unsigned8 Mnem/Value S alphanumeric and in the numeric fields, ALPHA NUM None this way, in the case of a data higher than 10000, it will be shown in the alphanumeric field. 63 DISPLAY_REFRESH Unsigned8 1 None D

Definition of Parameters and Values

In option mnemonic, the display may show the data in the numeric field and the mnemonic in the alphanumeric field.

In case you wish to visualize a certain tag, opt for the index relative equal to zero, and for the subindex equal to one (refer to paragraph Structure Block in the Function Blocks Manual).

> 🔸 🕸 🗗 🖌 📥 💇 🚍 1	2 🔫 💵 🚄 🐮 🐮 🐮 🗸 🕏	
arameter	Value	-
ST_REV	35	
TAG_DESC	DSP BLOCK	
STRATEGY	0	
ALERT_KEY	0	
-MODE_BLK		
TARGET	Auto	
ACTUAL	Auto	
PERMITTED	Auto:00S	
-NORMAL	Auto	
-BLOCK_ERR	<none></none>	
BLOCK_TAG_PARAM_1	AJ_BLK	
-INDEX_RELATIVE_1	8	
SUB_INDEX_1	2	
MNEMONIC_1	PRESS	
INC_DEC_1	0.25	
DECIMAL_POINT_NUMBER_1	2	
-ACCESS_1	Monitoring	
ALPHA_NUM_1	Mnemonic	
BLOCK_TAG_PARAM_2		
INDEX_RELATIVE_2	18	
SUB_INDEX_2	0	Î
(
_REV:		
	ciated with the function block. The revision value will be inc	remented
ach time a static parameter value in the	DIOCK IS Changed.	
		-
	Concel Edit Edit Close	Help

Figure 3.11 - Parameters for Local Adjustment Configuration

On Line: LD292 F-3605 - Display - DSP_	BLK	
۷ 🖬 🕼 🖌 🖉 🚍 👔	R I 2 5 5 5 6 8 V S	
Parameter	Value	
-SUB_INDEX_2	0	
MNEMONIC_2	DAMP	
-INC_DEC_2	0.0099999998	
-DECIMAL_POINT_NUMBER_2	2	
-ACCESS_2	Action	
-ALPHA_NUM_2	Mnemonic	
BLOCK_TAG_PARAM_3		
INDEX_RELATIVE_3	17	
-SUB_INDEX_3	2	
MNEMONIC_3	LOWER	
-INC_DEC_3	0.0099999998	
DECIMAL POINT NUMBER 3	2	
ACCESS_3	Action	
-ALPHA_NUM_3	Mnemonic	
-BLOCK_TAG_PARAM_4		
INDEX_RELATIVE_4	16	
-SUB INDEX 4	2	
-MNEMONIC 4	UPPER	
-INC DEC 4	0.0099999998	
DECIMAL_POINT_NUMBER_4	2	
ACCESS 4	Action	-1
SUB_INDEX_2:		
Sub Index of second parameter to be config	gured on Display.	A
]		· · · · · · · · · · · · · · · · · · ·
	Cancel Edit Cl	ose Help

Figure 3.12 - Parameters for Local Adjustment Configuration

On Line: LD292 F-3605 - Display - DSP	_BLK	_ 🗆 ×
< > < 🕸 🗗 🖉 🚍 🔞	R I 🖌 👗 🐮 🐮 🗸 😚	
Parameter	Value	
-INC_DEC_4	0.0099999998	
DECIMAL_POINT_NUMBER_4	2	
-ACCESS_4	Action	
-ALPHA_NUM_4	Mnemonic	
BLOCK_TAG_PARAM_5		
-INDEX RELATIVE 5	0	
-SUB INDEX 5	1	
-MNEMONIC 5	TAG	
-INC_DEC_5	0.25	
-DECIMAL POINT_NUMBER_5	2	
-ACCESS 5	Monitoring	
ALPHA NUM 5	Mnemonic	
-BLOCK TAG PARAM 6	Tag 6	
-INDEX RELATIVE 6	32	
-SUB INDEX 6	2	
-MNEMONIC 6	PRESS_NORMAL	
	0.25	
DECIMAL_POINT_NUMBER_6	2	
-ACCESS 6	Monitoring	
ALPHA NUM 6	Mnemonic	
-BLOCK_TAG_PARAM_7	Tag 7	
	~~~	
RELATIVE_INDEX_6:		
Relative Index of sixth parameter to be con	figured on Display.	<u>^</u>
		-
1		
		1
	Cancel Edit Close	Help

Figure 3.13 - Parameters for Local Adjustment Configuration

This parameter updates the local adjustment programming tree configured on each device.	On Line: LD292 F-3605 - Display - DS           ▼         ▶         ◆         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●			<ul> <li>The option "update" should be selected in order to execute the upgrade of local adjustment programming tree.</li> </ul>
	DECIMAL_POINT_NUMBER_6     ACCESS_6     ALPHA_NUM_6     BLOCK_TAG_PARAM_7     HINDEX_RELATIVE_7     SUB_INDEX_7     HINC_DEC_7     DECIMAL_POINT_NUMBER_7     ACCESS_7     ALPHA_NUM_7     DISPLAY_REFRESH     BUPDATE_EVT     BBLOCK_ALM     S      DISPLAY_REFRESH     SUB_OBSLAY_REFRESH      SUB_OBSLAY_REFRESH     SUB_OBSLAY_REFRESH     SUB_OBSLAY_REFRESH     SUB_OBSLAY_REFRESH     SUB_OBSLAY_REFRESH     SUB_OBSLAY_REFRESH     SUB_OBSLAY_REFRESH     SUB_OBSLAY_REFRESH     SUB_OBSLAY_REFRESH     SUB_OBSLAY_REFRESH     SUB_OBSLAY_REFRESH     SUB_OBSLAY_REFRESH     SUB_OBSLAY_REFRESH     SUB_OBSLAY_REFRESH     SUB_OBSLAY_REFRESH     SUB_OBSLAY_REFRESH     SUB_OBSLAY_REFRESH     SUB_OBSLAY_REFRESH     SUB_OBSLAY_REFRESH     SUB_OBSLAY_REFRESH     SUB_OBSLAY SUB_OBSLAY     SUB_OBSLAY SUB_OBSLAY	2 Monitoring Mnemonic Tag 7 31 2 PRESS_LIN_NORMAL 0.25 2 Monitoring Mnemonic None. None. None. None. None. Cancel Edit End Edit Close	) Help	After its step all the parameters selected will be shown on the LCD display.

Figure 3.14 - Parameters for Local Adjustment Configuration

## Programming Using Local Adjustment

The local adjustment is completely configured by **SYSCON**. It means, the user can select the best options to fit his application. From factory, it is configured with the options to set the Upper and Lower trim and for monitoring the input transducer value. Normally, the transmitter is much better configured by **SYSCON**, but the local functionality of the LCD permits an easy and fast action on certain parameters, since it does not rely on communication and network wiring connections. Among the possibilities by Local Adjustment, the following options can be emphasized: Mode block, Outputs, Tag visualization and Tuning Parameters setting.

The interface between the user is also described very detailed on the "General Installation, Operation and Maintenance Procedures Manual" Please take a detailed look at this manual in the chapter related to "Programming Using Local Adjustment". It is significantly the resources on this transducer display, also all the Series 302 field devices from **SMAR** has the same methodology to handle with it. So, since the user has learned once, he is capable to handle all kind of field devices from **SMAR**.

All function block and transducers defined according Foundation Fieldbus[™] have a description of their features written on binary files, by the Device Description Language. This feature permits that third parties configurator enabled by Device Description Service technology can interpret these features and make them accessible to configure. The Function Blocks and Transducers of Series 302 have been defined rigorously according the Foundation Fieldbus specifications in order to be interoperable to other parties.

The jumper W1 on top of the main circuit board must be in place and the main board must be fitted with digital display for access to the local adjustment. Without display, the local adjustment is not possible.



Figure 3.15 - Local Adjustment Holes

Table 3.4 shows the actions on the Z and S holes on the IF303 when Local Adjustment is enabled.

HOLE	ACTION		
Z	Inicializes and rotates through the available functions.		
S	Selects the function shown in the display.		

Table 3.4 - Purpose of the holes on the Housing

# **J1 Jumper Connections**

If J1 (see figure 3.16) is connected to ON, then simulation mode in the AI block is enabled.

## W1 Jumper Connections

If W1 is connected to ON, the local adjustment programming tree is enabled and then important block parameters can be adjusted.

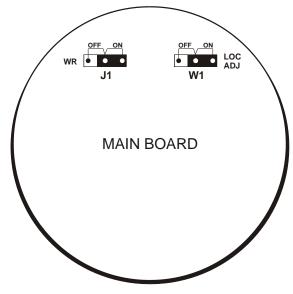



Figure 3.16 - J1 and W1 Jumpers

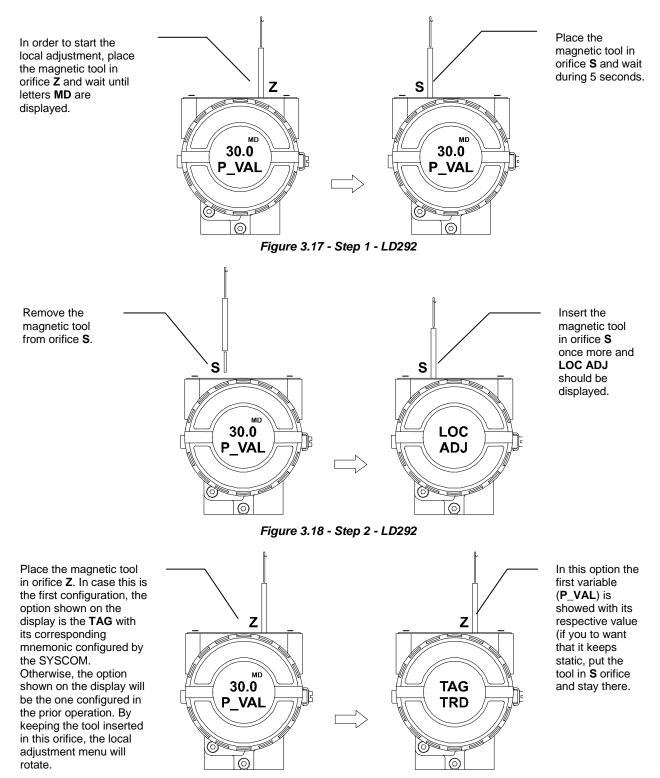



Figure 3.19 - Step 3 - LD292

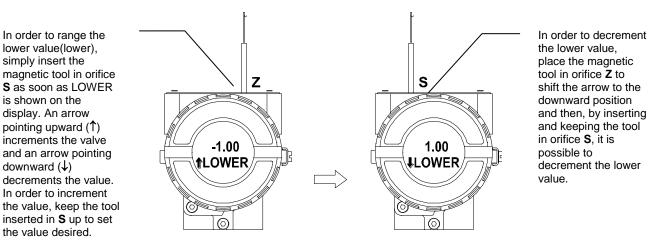
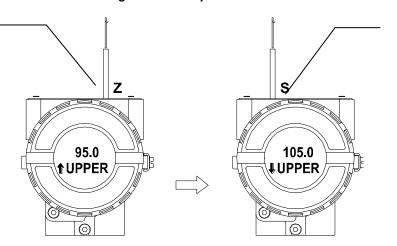




Figure 3.20 - Step 4 - LD292

In order to range the upper value(upper), simply insert the magnetic tool in orifice S as soon as upper is shown on the display. An arrow pointing upward  $(\uparrow)$ increments the valve and an arrow pointing downward  $(\downarrow)$ decrements the value. In order to increment the value, keep the tool inserted in S up to set the value desired.



In order to decrement the upper value, place the magnetic tool in orifice **Z** to shift the arrow to the downward position an then, by insetting and keeping the tool in orifice **S**, it is possible to decrement the upper value.

Figure 3.21 - Step 5 - LD292

NOTE
This Local adjustment configuration is a suggestion only. The user may choose his
preferred configuration via SYSCON, simply configuring the display block (See
Programming Using Local Adjustment)

# **MAINTENANCE PROCEDURES**

## General

NOTE Equipments installed in hazardous atmospheres must be inspected in compliance with the IEC60079-17 standard.

**SMAR Series 302** devices are extensively tested and inspected before delivery to the end user. Nevertheless, during their design and development, consideration was given to the possibility of repairs being made by the end user, if necessary.

In general, it is recommended that end users do not try to repair printed circuit boards. Spare circuit boards may be ordered from **SMAR** whenever necessary. Refer to the item "Returning Materials" at the end of this Section.

The table 4.1 shows the messages of errors and potential cause.

SYMPTOM	PROBABLE SOURCE OF PROBLEM
	* Transmitter Connections
	Check wiring polarity and continuity.
	Check for shorts or ground loops.
	Check if the power supply connector is connected to main board.
	Check if the shield is not used as a conductor.
	It should be grounded at one end only.
	*Power Supply
	Check power supply output. The voltage must be between 9 - 32 VDC at the <b>LD292</b> terminals. Noise and ripple should be within the following limits:
NO COMMUNICATION	a) 16 mV peak to peak from 7.8 to 39 KHz.
	b) 2 V peak to peak from 47 to 63 Hz for non-intrinsic safety applications and 0.2 V for intrinsic safety applications.
	c) 1.6 V peak to peak from 3.9 MHz to 125 MHz.
	*Network Connection
	Check that the topology is correct and all devices are connected in parallel.
	Check that two Terminators are OK and correctly positioned.
	Check length of trunk and spurs.
	Check spacing between couplers.
	* Electronic Circuit Failure
	Check the main board for defect by replacing it with a spare one.
	* Transmitter Connections
	Check for intermittent short circuits, open circuits and grounding problems.
	Check if the sensor is correctly connected to the LD292 terminal block.
	*Noise, Oscillation
	Adjust damping
INCORRECT READING	Check grounding of the transmitters housing.
	Check that the shielding of the wires between transmitter / panel is grounded only in one end.  * Sensor
	Check the sensor operation; it shall be within its characteristics. Check sensor type; it shall be the type and standard that the <b>LD292</b> has been configured to.
	Check sensor type, it shall be the type and standard that the LD292 has been configured to. Check if process is within the range of the sensor and the LD292.
	Check in process is within the fairge of the sensor and the LD232.

#### Table 4.1 - Messages of Errors and Potential Cause

If the problem is not presented in the table above follow the Note below:

NOTE
The Factory Init should be tried as a last option to recover the equipment control when the equipment presents some problem related to the function blocks or the communication. This operation must only be carried out by authorized technical personnel and with the process offline, since the equipment will be configured with standard and factory data.
This procedure resets all the configurations run on the equipment, after which a partial download should be performed.
Two magnetic tools should be used to this efect,. On the equipment, withdraw the nut that fixes the identification tag on the top of the housing, so that access is gained to the "S" and "Z" holes.
The operations to follow are:
1) Switch off the equipment, insert the magnetic tools and keep them in the holes (the magnetic end in the holes);
2) Feed the equipment;

3) As soon as Factory Init is shown on the display, take off the tools and wait for the "5" symbol on the right upper corner of the display to unlit, thus indicating the end of the operation.

This procedure makes effective all the factory configuration and will eliminate eventual problems with the function blocks or with the equipment communication.

### **Disassembly Procedure**

WARNING Do not disassemble with power on.

The Figure 4.3 an exploded view of the transmitter and will help to visualize the following:

#### Sensor

To remove the sensor from the electronic housing, the electrical connections (in the field terminal side) and the main board connector must be disconnected.

Loosen the hex screw (6) and carefully unscrew the electronic housing from the sensor, observing that the flat cable is not excessively twisted.

#### WARNING

To avoid damage do not rotate the electronic housing more than 270° without disconnecting the electronic circuit from the sensor and from the power supply. See Figure 4.1.



Figure 4.1 – Safety Housing Rotation

### **Electronic Circuit**

To remove the circuit board (5), loosen the two screws (3) that anchor the board.

WARNING	
The board has CMOS components, which may be damaged by electros correct procedures for handling CMOS components. It is also recomm boards in electrostatic-proof cases.	

Pull the main board out of the housing and disconnect the power supply and the sensor connectors.

### Reassemble Procedure

WARNING	
Do not assemble the main board with power on.	

#### Sensor

The fitting of the sensor must be done with the main board out of the electronic housing. Mount the sensor to the housing turning clockwise until it stops. Then turn it counterclockwise until it faces the protective cover (1). Tighten the hex screw (6) to lock the housing to the sensor.

### **Electronic Circuit**

Plug sensor connector and power supply connector to main board.

Attach the display to the main board. Observe the four possible mounting positions. (Figure 4.2). The **SMAR** mark indicates up position.

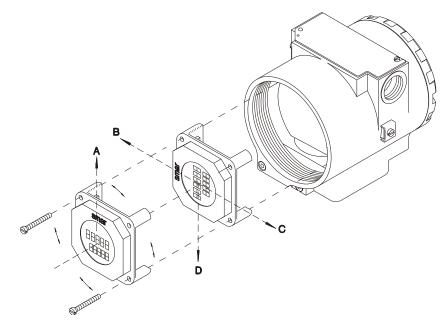



Figure 4.2 - Four Possible Positions of the Display

Anchor the main board and display with their screws (3).

After tightening the protective cover (1), mounting procedure is complete. The transmitter is ready to be energized and tested. It is recommended to open the transmitter's pressure taps to atmosphere and adjust the TRIM.

## Interchangeability

In order to obtain an accurate and better temperature compensated response. Each sensor is submitted to a characterization process and the specific data is stored in an EEPROM located in the sensor body.

Every time the power is turned on, the main circuit reads the sensor serial number, should it differ from the number stored in the memory. The circuit understands that there is a new sensor and the following information is transferred from the sensor to the main circuit.

- Temperature compensation coefficients.
- Sensor's trim including 5-point characterization curve.
- Sensor characteristics: type, range, diaphragm material and fill fluid.

The other transmitter characteristics are stored in the main circuit memory and are not affected by sensor change.

### Upgrading LD291 to LD292

The sensor and casing of the LD291 is exactly the same as the LD292. By changing the circuit board of the LD291 it becomes a LD292. The display on LD291 version **3.XX**, is the same as on LD292 and can therefore be used with the LD292 upgrade circuit board. With a LD292 version three or earlier, that display can not be used.

Upgrading the LD291 to a **LD292** is therefore very much the same as the procedure for replacing the main board described above.

To remove the circuit board (5), loosen the two screws (3) that anchor the board.

Caution with the circuit boards must be taken as mentioned above.

Pull the LD291 main board out of the housing and disconnect the power supply and the sensor connectors.

Put in the LD292 main board reversing the procedure for removing the LD291 circuit.

### **Returning Materials**

Should it become necessary to return the transmitter and/or configurator to **SMAR**, simply contact our office, informing the defective instrument serial number, and return it to our factory.

If it becomes necessary to return the transmitter and/or configurator to Smar, simply contact our office, informing the defective instrument's serial number, and return it to our factory. In order to speed up analysis and solution of the problem, the defective item should be returned with the Service Request Form (SRF – Appendix B) properly filled with a description of the failure observed and with as much details as possible. Other information concerning to the instrument operation, such as service and process conditions, is also helpful.

Instruments returned or to be revised outside the guarantee term should be accompanied by a purchase order or a quote request.

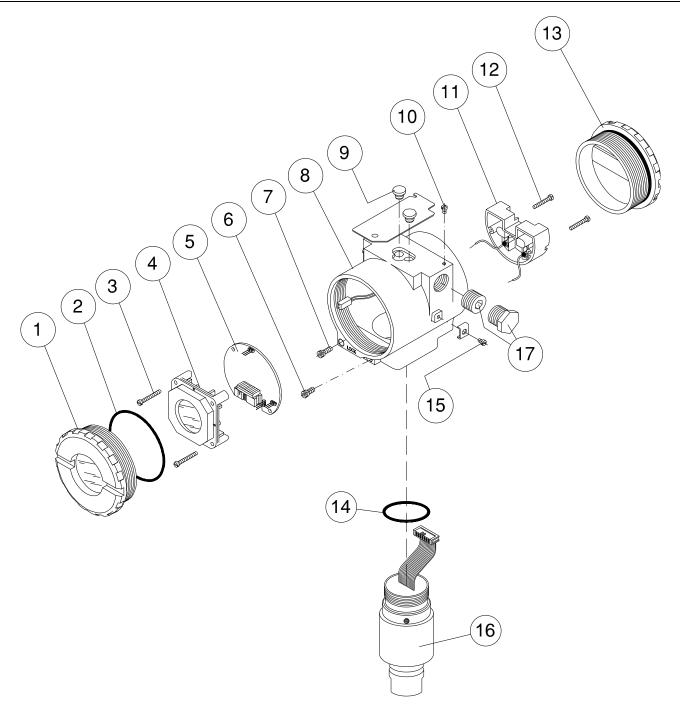



Figure 4.3 – Exploded View

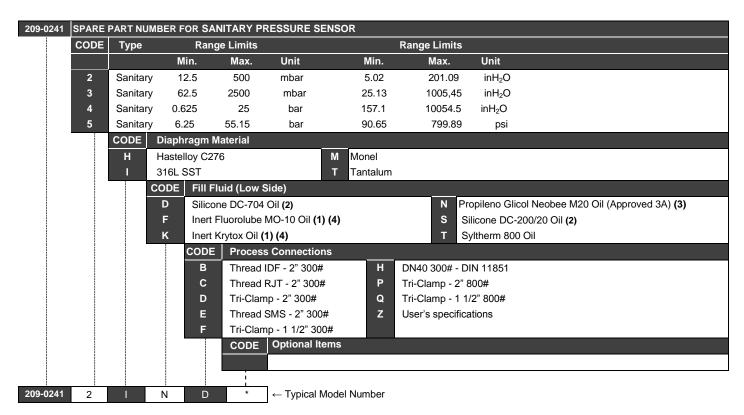
ACCESSORIES		
ORDERING CODE	DESCRIPTION	
SD1	Magnetic Tool for Local Adjustment	
BC1	Fieldbus/RS232 Interface	
SYSCON	System Configurator	
PS302	Power Supply	
BT302	Terminator	
PCI Process Control Interface		

SPARE PARTS LIST				
DESCRIPTION OF PARTS			CODE	CATEGORY (NOTE 1)
HOUSING (NOTE 2)		8	(NOTE 7)	
COVER WITHOUT WINDOW (INCLUDES	. Aluminum	1 and 13	204-0102	
O'RING)	. 316 SS	1 and 13	204-0105	
COVER WITH WINDOW (INCLUDES O'RING)	. Aluminum	1	204-0103	
COVER WITH WINDOW (INCLUDES ORING)	. 316 SS	1	204-0106	
COVER LOCKING SCREW		7	204-0120	
SENSOR LOCKING SCREW	. Without Head M6 Screw	6	400-1121	
EXTERNAL GROUND SCREW		15	204-0124	
IDENTIFICATION PLATE FIXING SCREW		10	204-0116	
DISPLAY DIGITAL		4	214-0108	
TERMINAL BLOCK		11	400-0059	
MAIN ELECTRONIC CIRCUIT BOARD		5	400-0348	A
O'RING (NOTE 3)	. Cover, BUNA-N	2	204-0122	
ORING (NOTE 3)	. Neck, BUNA-N	14	204-0113	В
TERMINAL HOLDING SCREW	. Housing, 316 SS	12	204-0119	
TERMINAL HOLDING SCREW	. Housing, Aluminum	12	304-0119	
MAIN BOARD SCREW FOR HOUSING,	Units With indicator	3	304-0118	
aluminum.	Units Without indicator	3	304-0117	
MAIN BOARD SCREW FOR HOUSING,	Units With indicator	3	204-0118	
316 SS.	Units Without indicator	3	204-0117	
	. Carbon Steel	-	209-0801	
MOUNTING BRACKET FOR 2" PIPE MOUNTING (NOTE 5)	. 316 SS	-	209-0802	
	. Carbon Steel with bolts, nuts, washers and U-clamp in 316SS	-	209-0803	
LOCAL ADJUSTMENT PROTECTION CAP		9	204-0114	
SENSOR		16	(NOTE 4)	В
PLUG	1/2 NPT Internal Hexagon Plug in Plated CS BR Ex d. 1/2 NPT Internal Hexagon Plug in 304 SST BR Ex d. M20 X 1.5 External Hexagon Plug in 316 SST BR Ex d. PG13.5 External Hexagon Plug in 316 SST BR Ex d.	17 17 17 17 17	400-0808 400-0809 400-0810 400-0811	

For category A, it is recommended to keep, in stock, 25 parts installed for each set, and for category B, 50.
 Includes Terminal Block, Bolts, caps and Identification plate without certification.
 0-Rings and Backup Rings are packaged in packs of 12 units.
 To specify sensors, use the ordering code for sensors.
 Including U-clamp, nuts, bolts and washers.
 To reverse the product of the packaged in packs of the package.

2-3-4-5-6-To specify housing, use the ordering code for housing.

# Ordering Code for Housing


CODE				DESCRIPTION							
400-1314 - 2	HOUSIN	G: LD292									
	Option	Commun	ommunication Protocol								
	F	FOUNDA	TION Field								
		Option		I Connection							
		0	½ NPT								
		A	A M20 X 1.5								
		В	PG13.5								
			Option	Material							
			H0	Aluminium (IP/Type)							
			H1	316 SST (IP/Type)							
			H2	Aluminium – for saline atmospheres (IPW/Type X)							
			H4	Aluminium Copper Free (IPW/Type X)							
				Option Painting							
				P0 Gray Munsell N 6,5							
				P8 Without Painting							
				P9 Safe Blue Base EPÓXI – electrostatic painting							
400-1314 - 2	F	0	H0	P0							

# Ordering Code for Sensor

209-0241	SPARE	PART NI	JMBER FOR	R PRESSURE	GAGE SENS	SOR			
	CODE	Туре	R	ange Limits			Range Limits		
i			Min.	Max.	Unit	Min.	Max.	Unit	
1	M2	Gage	12.5	500	mbar	5.02	201.09	inH ₂ O	
1	М3	Gage	62.5	2500	mbar	25.13	1005.45	inH ₂ O	
-	M4	Gage	0.625	25	bar	157.1	10054.5	inH ₂ O	
	M5	Gage	6.25	250	bar	90.65	3625.94	psi	
i	ł	CODE		m Material a	nd Fill Fluid				
1	i	1		- Silicone Oil					
1	1	2		<ul> <li>Inert Fluoro</li> </ul>	( )				
	1	3		C276 - Silicon	.,				
	1	4		C276 – Inert F		(2)			
i	ł	D		- Inert Krytox	.,				
1	i	E		C276 – Inert K		2)			
!	Ì	Q R		– Inert Haloca C276 – Inert ⊢		•			
!		ĸ	í l	Process Con		()			
i	1			lastelloy C276		eriai			
i i	ļ			16L SST	(1)				
1	i	i		Iser's specifica	ations				
1	1				cess Connec	tions			
	1				14 NPT - Fem			U 1/2 E	3SP – Male
i	ļ				X 1,5 Male				e Manifold integrated to the transmitter
1	i				,	- Form B (3)			PT Sealed
1	Ì	i			DIN 16288 -	( )			's specifications
		:	:		14 NPT - Male	( )			
	1	!		i					
209-0241	M2	1		A			← Ty	pical Mode	el Number
								•	

#### NOTE

Meets NECE MR - 01 - 75/ISO 15156 recommendations.
 Inert Fluid: safe for oxygen service.
 The DIN 16288 standards was substituted by the DIN EN 837-1.

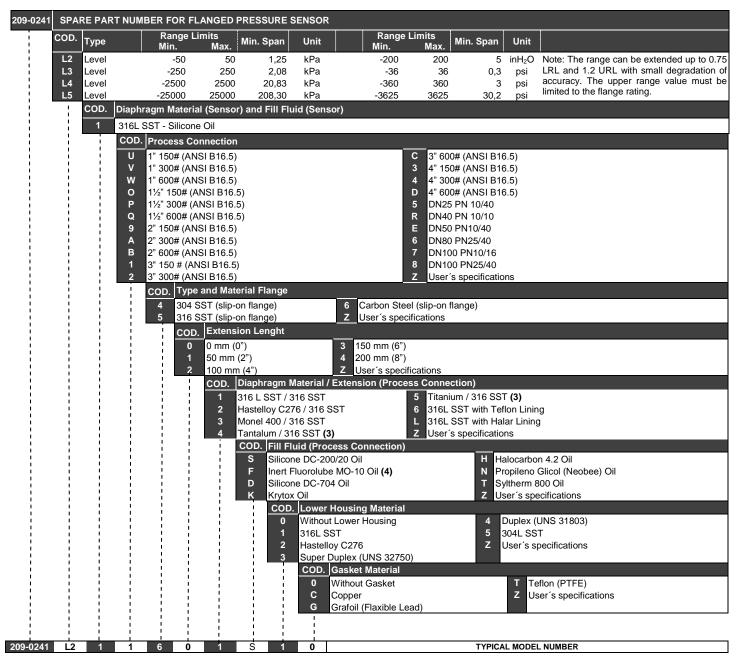


*Leave blank for no optional items.

NOTES

(1) Meets NACE MR – 01 – 75/ISO 15156 recommendations.

(2) Silicone Oil is not recommended for Oxygen  $(O_2)$  or Chlorine service.


(3) Compliant with 3A-7403 standard for food and other applications where sanitary connections are required:

- Neobee M2O Fill Fluid

- Finishing wet Face: 0,8 µm Ra (32 µ" AA)

- Wet O-Ring: Viton, Buna-N and Teflon

(4) Inert Fluid: Oxygen Compatibility, safe for oxygen service.



#### NOTES

(1) Silicone Oils not recommendations for Oxygen (O2) or Chlorine service.

(2) Not applicable for vacuum service.

(3) Attention, check corrosion rate for the process, tantalum plate 0.1 mm, AISI 316L extension 3 to 6 mm.

(4) Fluorolube fill fluid is not available for Monel diaphragm.

(5) Inert Fluid: Safe for oxygen service.

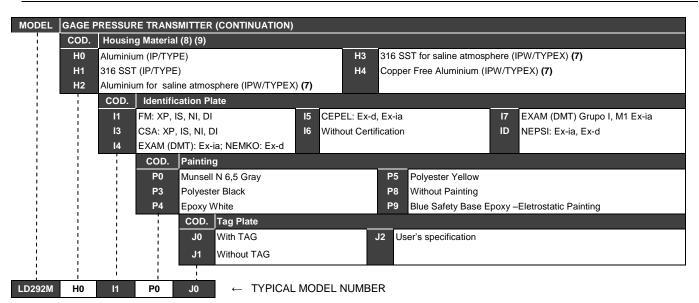
# **TECHNICAL CHARACTERISTICS**

	Fu	nctional Specifications						
Process Fluid	Liquid, gas or steam.							
Output Signal	Digital only. Fieldbus Foundation [™] , 31.25 kbit/s voltage mode with bus power.							
Power Supply		intrinsic safety from 7.8 kHz - 39 kHz should be greater or equal to 3 kOhm. npedance (assuming an IS barrier in the power supply) from 7.8 kHz - 39						
Indicator		rical and 5-character alphanumerical LCD indicator.						
Hazardous Area	Explosion proof (FM, NEMKO, CEPEL), dust ignition proof and non-incendive (FM) and intrinsic							
Certifications	safety (FM, CSA, NEMKO, EXAM, CEPEL, NEPSI). Authorized representative in European Community							
European Directive Information	Smar Gmbh-Rheingaus PED Directive (97/23/E This product is in co accordance with sound JIS. EMC Directive (2004/1 The EMC test was per IEC61000-6-4:2006, IE- Keep the shield insulate to use shielded cable. ATEX Directive (94/9/E explosive atmosphere This product was certif certified body for manuf LVD Directive 2006/95 limits According the LVD dire explosive atmosphere"	<ul> <li>Bartasse 9-55545 Bad Kreuzanach</li> <li>C) – Pressure Equipment Directive mpliance with the directive and it was designed and manufactured in l engineering practice using several standards from ANSI, ASTM, DIN and</li> <li>08/EC) - Eletromagnetic Compatibility formed according to IEC standard: IEC61326-1:2006, IEC61326-2-3:2006, C61000-6-2:2005. For use in environment only.</li> <li>Ed at the instrument side, connecting the other one to the ground if necessary</li> <li>EC) – Equipment and protective systems intended for use in potentially</li> </ul>						
	found at <u>www.smar.co</u> Ambient: Process:	-40 to 85 °C (-40 to 185 °F) -15 to 85 °C (-59 to 185 °F) LD290I -40 to 100 °C (-40 to 212 °F) Silicone Oil						
Temperature Limits	-	0 to 85 °C (-32 to 185 °F) Inert Fluorolube Oil -25 to 85 °C (-13 to 185 °F) Viton O'ring -40 to 150 °C (-40 to 302 °F) LD290L -15 to 150 °C (-59 to 302 °F) LD290I						
	Storage:	40 to 100 °C (-40 to 212 °F)						
	Display	-20 to 80 °C (-4 to 176 °F) -40 to 85 °C (-40 to 185 °F) without damage						
Turn-on Time		ations of less than 10 seconds after power is applied to the transmitter.						
Configuration		<i>i</i> be done using local adjustment magnetic tool if device is fitted with display. is possible using Syscon.						
Volumetric	Less than 0.15 cm ³ (0.0							
Displacement								
Overpressure and Static Pressure Limits (MWP – Maximum Working Pressure)         14 MPa (138 bar) for ranges 2, 3, 4. 31 MPa (310 bar) for range 5.           For Level Ranges ANSI/DIN (models LD290L): 150#: 6 psia to 235 psi (-0,6 to 16 bar) to 199,4 °F (93 °C) 300#: 6 psia to 620 psi (-0,6 to 43 bar) to 199,4 °F (93 °C) 600#: 6 psia to 1240 psi (-0,6 to 85 bar) to 199,4 °F (93 °C) PN10/16: -60 kPa to 1,02 MPa to 212 °F (100 °C) PN25/40: -60 kPa to 2,55 MPa to 212 °F (100 °C)								
	Overpressures above w	ill not damage the transmitter, but a new calibration may be necessary.						

				_			VARNIN					
		lt is	s describ	ed here on	ly the m				naterials	referenc	ed in ea	ach
				not be man								
		Te	mperatu	res above 1	150 ° C a	are not a	vailable	in standa	rd model	S.		
	PRES	SURES	TABLE	FOR SEAL	ANDL						ANDAR	D
		Mate	erial	Pressure		1		n Tempera				
		Gro		Class	RT	100			250	300	350	
				DNI 40	10	1	- 1	Pressure	1		0.0	
				PN 16	16	13.7			10.4	9,6	9.2	
		10E0		PN 25 PN 40	25 40	21.5			16.3 26	15.1 24.1	14.4 23	<u>r</u>
		AISI		PN 63	63	63	57.3		50.1	46.8	45	_
		304/304	41	PN 100	100				65.2	60.4	57.6	
		50-7/50	τL	PN 160	160				104.3		92.1	
				PN 250	250				163	151.1		
				111230	200						144	
	[	Mate	erial	Pressure				Tempera				
			oup	Class	RT	100			250	300	350	
						-		Pressure	1			
				PN 16	16	16	14.5		12.7	11.8	11.4	
		4 4		PN 25	25	25	22.7		19.8	18.5	17.8	
		14E0		PN 40	40	40	36.3		31.8	29.7	28.5	<u> </u>
		AISI 316/31	CI.	PN 63	63	63	57.3		50.1	46.8	45	_
		310/31	OL	PN 100 PN 160	100	100			79.5	74.2	71.4	
				PN 160 PN 250	160 250	160 250			127.2			
Overpressure and	L			FN 200	200	200	221.	5 210.7	190.0	100.7	170.3	5
Static Pressure		Mate	arial	Pressure		Μ	laximum	n Tempera	ature All	owed		
Limits (MWP –		Gro		Class	RT	100			250	300	350	)
Maximum Working	-		P		10			Pressure	1	d (bar)		
Pressure) (continuation)				PN 16	16	16	16		16	-	-	
(continuation)		16E0	C	PN 25 PN 40	25 40	25	25	25	25	-	-	
		1.4410 Duplex		PN 40 PN 63	63	40 63	40 63		40 63	-	-	
		1.4462		PN 100	100	100			100	-	-	_
		Duplex		PN 160	160	160			160	-	_	
		- aprost		PN 250	250	250			250	-	-	_
		DECOU			•	•	•	•		E 2000 S		
		KESSUI		BLE FOR S				emperatu				
		erial oup	Pressure Class	e -29 to 38	50	100	150	200	250	300	325	350
		oup	01035	00		Max	imum Pr	essure Al	lowed (b	oar)		
			150	20	19.5	17.7	15.8	13.8	12.1	10.2	9.3	8.4
			300	51.7	51.7	51.5	50.3	48.3	46.3	42.9	41.4	40.3
	Hast		400	68.9	68.9	68.7	66.8	64.5	61.7	57	55	53.6
	C276		600	103.4	103.4	103	100.3	96.7	92.7	85.7	82.6	80.4
		9	900 1500	155.1 258.6	155.1 258.6	154.6 257.6	150.6 250.8	145 241.7	139 231.8	128.6 214.4	124 206.6	120.7 201.1
			2500	430.9	430.9	429.4	418.2	402.8	386.2	357.1	344.3	335.3
			2000	400.0	400.0						011.0	000.0
	Mat	erial	Drocourt	0 20 to		Ma	ximum T	emperatu	re Allow	ed		
		oup	Pressur Class	e -29 to 38	50	100	150	200	250	300	325	350
			150	00	40.5	1		ressure A			0.0	
	0045		150	20	19.5	17.7	15.8	13.8	12.1	10.2	9.3	8.4
	S318 Duple		300 400	68.9	51.7 68.9	50.7 67.5	45.9 61.2	42.7 56.9	40.5 53.9	38.9 51.8	38.2 50.9	37.6 50.2
	S327		+00 500	103.4	103.4	101.3	91.9	85.3	53.9 80.9	77.7	76.3	50.2 75.3
	Supe		900	155.1	155.1	152	137.8	128	121.4	116.6	114.5	112.9
	Duple		1500	258.6	258.6	253.3	229.6	213.3	202.3	194.3	190.8	188.2
		2	2500	430.9	430.9	422.2	382.7	355.4	337.2	323.8	318	313.7

	1										
					Ma	ximum T	emperat	ure Allov	ved	1	
	Material	Pressure	-29 to	50	100	150	200	250	300	325	350
	Group	Class	38	00						020	000
				r				Allowed (		T	1
		150	15.9	15.3	13.3	12	11.2	10.5	10	9.3	8.4
		300	41.4	40	34.8	31.4	29.2	27.5	26.1	25.5	25.1
		400	55.2	53.4	46.4	41.9	38.9	36.6	34.8	34	33.4
	AISI316L	600	82.7	80	69.6	62.8	58.3	54.9	52.1	51	50.1
Overpressure and		900	124.1	120.1	104.4	94.2	87.5	82.4	78.2	76.4	75.2
Static Pressure		1500	206.8	200.1	173.9	157	145.8	137.3	130.3	127.4	125.4
Limits (MWP –		2500	344.7	333.5	289.9	261.6	243	228.9	217.2	212.3	208.9
Maximum Working											
Pressure)					Max	kimum T	emperat	ure Allov	ved		
(continuation)	Material	Pressure	-29 to	50	100	150	200	250	300	325	350
	Group	Class	38	50	100	150	200	230	300	525	330
					Max	imum Pr	essure A	Allowed (	bar)		
		150	19	18.4	16.2	14.8	13.7	12.1	10.2	9.3	8.4
		300	49.6	48.1	42.2	38.5	35.7	33.4	31.6	30.9	30.3
		400	66.2	64.2	56.3	51.3	47.6	44.5	42.2	41.2	40.4
	AISI316	600	99.3	96.2	84.4	77	71.3	66.8	63.2	61.8	60.7
		900	148.9	144.3	126.6	115.5	107	100.1	94.9	92.7	91
		1500	248.2	240.6	211	192.5	178.3	166.9	158.1	154.4	151.6
		2500	413.7	400.9	351.6	320.8	297.2	278.1	263.5	257.4	252.7
					Max	kimum T	emperat	ure Allov	ved		
	Material	Pressure	-29 to	50	100	150	200	250	300	325	350
	Group	Class	38	50						525	330
					Max			Allowed (	bar)		
		150	19	18.3	15.7	14.2	13.2	12.1	10.2	9.3	8.4
		300	49.6	47.8	40.9	37	34.5	32.5	30.9	30.2	29.6
	AISI304	600	99.3	95.6	81.7	74	69	65	61.8	60.4	59.3
		1500	248.2	239.1	204.3	185	172.4	162.4	154.6	151.1	148.1
		2500	413.7	398.5	340.4	308.4	287.3	270.7	257.6	251.9	246.9
Humidity Limits	0 to 100% I	RH.									

	Performance Specifications
Reference conditions	Range starting at zero, temperature 25°C (77°F), atmospheric pressure, power supply of 24 Vdc, Silicone oil fill fluid, isolating diaphragms in 316L SS and digital trim equal to lower and upper range values.
	For ranges 2, 3, 4 and 5: ±0.075% of span (for span >= 0.1 URL) ±[0.0375 + 0.00375 URL/SPAN] % of span (for span < 0.1 URL)
Accuracy	For Level Transmitter: ± 0.08 % of span (for span ≥ 0.1 URL) ± [0.0504 + 0.0047 URL/span] % of span (for span < 0.1 URL)
	For Insertion Transmitter: ±0.2% of span
Stability	±0.15% of URL for 5 years.
	± [0.02 URL + 0.06% of span], per 20 °C (68 °F) for span >= 0.2 URL ± [0.023 URL+0.045% of span], per 20°C (68 °F) for span < 0.2 URL
Temperature Effect	
	For Level Transmitter:
	6 mmH ₂ O per 20 °C for 4" and DN100
	17 mmH ₂ O per 20 °C for 3" and DN80
Power Supply Effect	±0.005% of calibrated span per volt.
Mounting Position Effect	Zero shift of up to 250 Pa (1 in $H_2O$ ) which can be calibrated out. No span effect.
Electromagnetic	Designed to comply with, Approved according to IEC61326-1:2006, IEC61326-2-3:2006, IEC61000-
Interference Effect	6-4:2006, IEC61000-6-2:2005.


Physical Specifications						
Electrical Connection	1/2 -14 NPT, PG 13.5, or M20 × 1.5. Other connections or request.					
Process Connection	1/2 - 14 NPT - (Female or Male), G ½ A DIN 16288 Form B - Male or G ½ DIN 16288 Form D - Male.					

Wetted Parts	Isolating Diaphragms
wetted Parts	316L SST or Hastelloy C276.
	Electronic Housing
	Injected aluminum with polyester painting or 316 SST. According to NEMA Type 4X or Type 4, IP66, IP66W*.
Nonwetted Parts	*The IP66W sealing test (immersion) was performed at 1 bar for 24 hours. For any other situation, please consult
	Smar. IP66W tested for 200h to according NBR 8094 / ASTM B 117 standard.
	Level Flange (LD290L)
	316L SST, 304 SST and Plated Carbon Steel. Cover O-Rings
	Buna-N.
	Mounting Bracket
Nonwetted Parts (continuation)	Optional universal mounting bracket for surface or vertical/horizontal 2" - pipe (DN50) Carbon Steel with polyester painting or 316 SST. Accessories (bolts, nuts, washers and U-clamp) in Carbon Steel or 316 SST.
	Identification Plate
	316 SST.
	Approximate Weight
	<2.0Kg (4lb): Aluminium housing without mountatin bracket.

# Ordering Code

M		ATION™		<b>NITTERS</b>						
	CODE			Range Limits			Range Limits			
	OODL	Type	Min.	Max.	Unit	Min.	Max.	Unit		
	2	Gage	12.5	500	mbar	5.02	201.09	inH ₂ O		
	3	Gage	62.5	2500	mbar	25.13	1005.45	inH ₂ O		
	4	Gage	0.625	25	bar	157.1	10054.5	inH ₂ O		
	5	Gage	6.25	250	bar	90.65	3625.94	psi		
	1	CODE			and Fill Fluid					
	-	1		- Silicone O						
		2			olube Oil (2)					
		3	Hastelloy	C276 - Silico	ne Oil (1)					
	i	4	Hastelloy	C276 – Inert	Fluorolube O	il <b>(2)</b>				
		D	316L SST	- Inert Kryto	ox Oil <b>(2)</b>					
		Е	Hastelloy	C276 – Inert	Krytox Oil (2)					
		Q	316L SST	<ul> <li>Inert Halo</li> </ul>	carbon 4.2 Oi	(2)				
		R	Hastelloy	C276 – Inert	Halocarbon 4	.2 Oil <b>(2)</b>				
	i		CODE	Process Co	nnections Ma	iterial				
			H H	lastelloy C27	76 (1)					
			I 3	16L SST						
			ΖU	Jser's specifi	cations					
				CODE Lo	cal Indicator					
	i	i		0 W	ithout Indicato	r				
				1 W	ith Indicator					
				CO	DE Proces	ss Connections				
	-			!		NPT - Female		U	1/2 BSP – Male	
		i			A M20 X 1			v		integrated to the transmitte
	i i		i			DIN 16288 - Form	В	×	1" NPT Sealed	
			i			IN 16288 - Form D		Z	User's specifica	ations
				i 🗖		NPT - Male				
	-			!	OODL	-	ctions			A M20 X 1 5 (5)
		i			0	1/2 - 14 NPT (3)		<b>)</b>		A M20 X 1.5 (5) B PG 13.5 DIN (5)
	i			i	1	1/2 - 14 NPT X 3/		,	,	Z User's specifications
			1		2 3	1/2 - 14 NPT X 3/ 1/2 - 14 NPT X 1/		-		
			1		4	1/2 - 1/2 NPTF (3		,		
		ł			4 5	1/2 - 1/2 NPTP (3 1/2 - 3/4 NPTF (3	,			
	i	i					ng Bracket			
	i			i			lounting Brack	et		
			i i	1	1 I 1 I		-		n Carbon Steel ac	ressories
							-		SST accessorie	
	-								1 316 SST access	
							•		SST accessorie	
		i		i	 		Optional Items			
	i			i	i i I I					
	ł	1		:						
		1		1	1 A	0 *	TYPICAL M			

* Leave blank for no optional items.



## **Optional Items**

Special Procedures         C1 – Degrease Cleaning (Oxygen or Chlorine Service)			
Burnout BD – Down Scale			
	BU – Up Scale		
Características Especiais	ZZ – User Specification		

#### NOTES

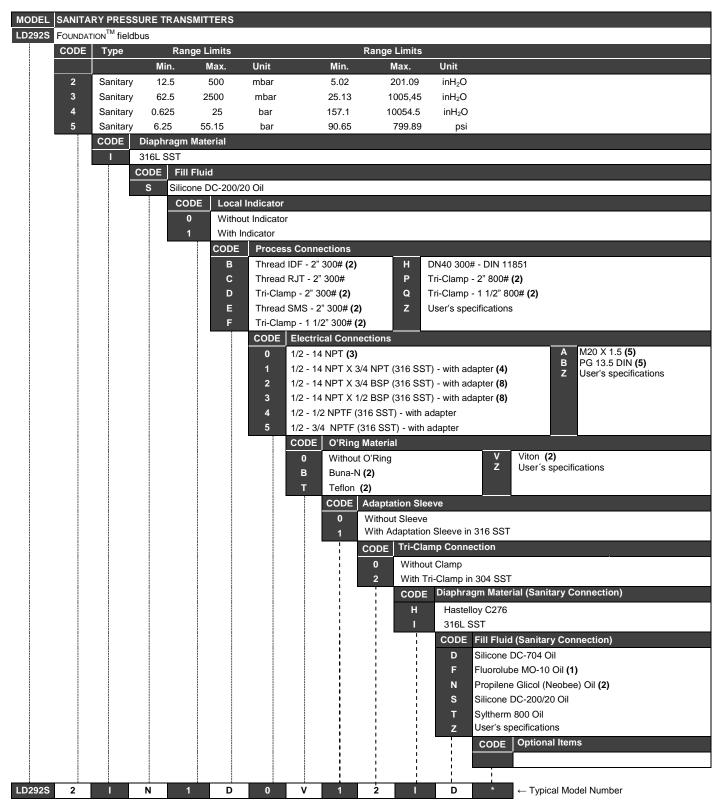
(1) Meets NACE material recommendation per MR-01-75.

(2) Inert fluid: safe for oxygen service.

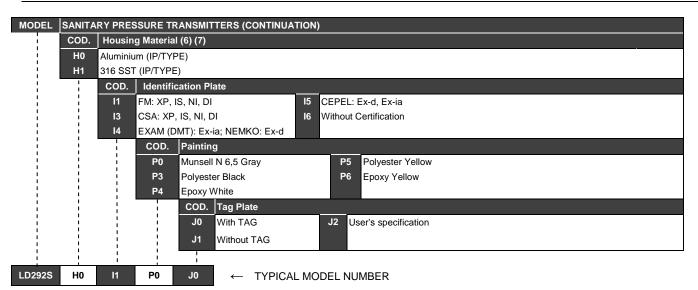
(3) Certificate for use in Hazardous Locations (CEPEL, NEPSI, NEMKO, EXAM, FM, CSA).

(4) Certificate for use in Hazardous Locations (CEPEL, CSA).

(5) Certificate for use in Hazardous Locations (CEPEL, NEPSI, NEMKO, EXAM).


(6) Not certified for use in hazardous locations.

(7) IPW/TYPEX was tested for 200 hours according to NBR 8094 / ASTM B 117 standard.


(8) IPX8 tested for 10 meters of water column for 24 hours.

(9) Ingress Protection:

	Products	CEPEL	NEMKO/EXAM	FM	CSA	NEPSI
Γ	LD29X	IP66/W	IP66/68/W	Type 4X/6/6P	Type 4X	IP67



*Leave blank for no optional items.



# **Optional Items**

Special Procedures	C1 –Degrease Cleaning (Oxygen or Chlorine Service) C4 - Polishing of the sanitary connections according to 3A Certification (2)
Burnout	BD – Down Scale BU – Up Scale

#### NOTE

(1) Inert Fluid: safe for oxygen service.

(2) Compliant with 3A-7403 standard for food and other applications where sanitary connections are required:

- Neobee M2O Fill Fluid

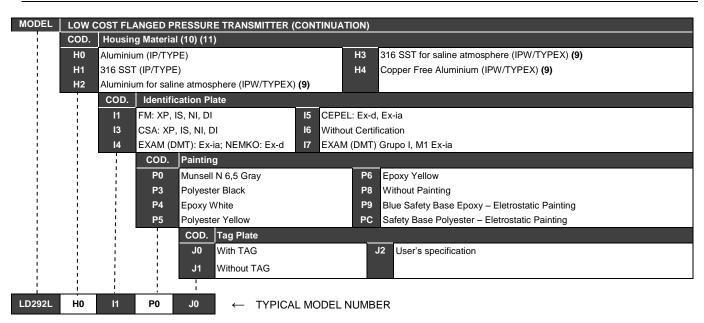
- Finishing wet Face: 0.8 µm Ra (32 µ" AA)

- Wet O-Ring: Viton, Teflon and Buna-N

(3) Certificate for use in Hazardous Locations (CEPEL, NEPSI, NEMKO, EXAM, FM, CSA).

(4) Certificate for use in Hazardous Locations (CEPEL, CSA).
(5) Certificate for use in Hazardous Locations (CEPEL, NEPSI, NEMKO, EXAM).

(6) IPX8 tested for 10 meters of water column for 24 hours.


(7) Ingress Protection:

Produtos	CEPEL	NEMKO/EXAM	FM	CSA	NEPSI
LD29X	IP66/W	IP66/68/W	Type 4X/6/6P	Type 4X	IP67

(8) Not certified for use in hazardous locations.

2L FOU	INDATION TM	fieldbus						
COD		Ran	ge Limits	Unit		Range Limits	Unit	
2	Level	Min. 12.5	Max. 500	mbar	5.02	in. Max. 201.09	inH ₂ O	
3	Level	62.5	2500	mbar	25.13	1005.45	inH ₂ O	
4	Level	0.625	25	bar	157.1	10054.5	inH ₂ O	
5	Level	6.25	250	bar	90.65	3625.94	psi	
			aterial (Sensor				pai	
		16L SST - Si				01)		
	C	00.	ndicator					
			Indicator			1 Wit	h Digital Indic	cator
		1	Process Conn					
		U	1" 150# (ANSI	,				3" 600# (ANSI B16.5) 4" 150# (ANSI B16.5)
		v w	1" 300# (ANSI 1" 600# (ANSI	,				4" 150# (ANSI B16.5) 4" 300# (ANSI B16.5)
		0	1½" 150# (ANS	,				4" 600# (ANSI B16.5)
!		Р	1½" 300# (ANS	,				DN25 PN 10/40
		Q	1½" 600# (ANS	,				DN40 PN 10/10
į	i i	9	2" 150# (ANSI	,				DN50 PN10/40
i	i	A B	2" 300# (ANSI 2" 600# (ANSI	,				DN80 PN25/40 DN100 PN10/16
i	i	1	3" 150 # (ANSI	,				DN100 PN25/40
i	i	2	3" 300# (ANSI	,			-	Jser's specifications
i	į		COD. Electric	al Connec	tion			
i	Ì	i i	0 1/2 - 14	NPT (3)				5 1/2 - 3/4 NPTF (AI 316) - with adapter
	i	i i				6) - with adapter		A M20 X 1.5 (5)
i	Ì	i i				6) - with adapter		<ul><li>B PG 13.5 DIN (5)</li><li>Z User's specifications</li></ul>
	1	i i				6) - with adapter	(12)	
					316) - with laterial Flar			
1	1				ip-on flange		6 Carbon S	teel (slip-on flange)
	1				ip-on flange	<i>'</i>		ecifications
					ension Leng			
	ł				n (0")	- -	2 100 m	nm (4") 4 200 mm (8")
					ım (2")			nm (6") Z User's specifications
	1			CO	D. Diaphra	gm Material / E>	ctension (Pro	ocess Connection)
		-		1	316 L SS	ST / 316 SST	5	Titanium / 316 SST <b>(6)</b>
				2		y C276 / 316 SS		316L SST with Teflon Lining
				3		00 / 316 SST		316L SST with Halar Lining
-				4		n / 316 SST <b>(6)</b> Fill Fluid (Proce:	Z ss Connectiv	User's specifications
1	l l					Silicone DC-200/2		H Halocarbon 4.2 Oil
1						nert Fluorolube N		
į	i i				D	Silicone DC-704	Oil	T Syltherm 800 Oil
į	i	! !				Krytox Oil		Z User's specifications
i	i					COD. Lower Ho		
i	i	1 I					ower Housing	
i	i		ii	1		1 316L SST 2 Hastelloy		5 304L SST Z User's specifications
i	i				i i		olex (UNS 32)	
i		: :					asket Materia	· · · · · · · · · · · · · · · · · · ·
i							ithout Gasket	
							opper	T Teflon (PTFE)
i					1		afoil (Flaxible	
i						C	OD. Optiona	I Items

*Leave it blank when there are not optional items.



## **Optional Items**

Special Procedures	C1 – Degrease Cleaning (Oxygen or Chlorine Service)
Burnout	BD – Down Scale
	BU – Up Scale
	<b>U0</b> – With 1 Flush Connection 1/4" NPT (if supplied with lower housing)
	U1 – With 2 Flush Connections 1/4" NPT per 180°
Lower Housing	U2 – With 2 Flush Connections 1/4" NPT per 90°
Connection	U3 – With 2 Flush Connections 1/2" - 14 NPT per 180° (with cover)
	U4 – Without Flush Connection

#### NOTES

(1) Silicone Oils not recommendations for Oxygen (O₂) or Chlorine service.

(2) Not applicable for vacuum service.

(3) Certificate for use in Hazardous Locations (CEPEL, NEPSI, NEMKO, EXAM, FM, CSA).

(4) Certificate for use in Hazardous Locations (CEPEL, CSA).(5) Certificate for use in Hazardous Locations (CEPEL, NEPSI, NEMKO, EXAM).

(6) Attention, check corrosion rate for the process, tantalum plate 0.1 mm, AISI 316L extension 3 to 6mm.

(7) Fluorolube fill fluid is not available for Monel diaphragm.

(8) Inert Fluid: Safe for oxygen service.

(9) IPW/TYPEX was tested for 200 hours according to NBR 8094 / ASTM B 117 standard.

(10) IPX8 tested for 10 meters of water column for 24 hours.

(11) Ingress Protection:

Products	CEPEL	NEMKO/EXAM	FM	CSA	NEPSI
LD29X	IP66/W	IP66/68/W	Type 4X/6/6P	Type 4X	IP67

(12) Not certified for use in hazardous locations.

MODEL	PRESSU	IRE TRA	NSMITTE	R WITH I	EXTEND	D PROB	E					
LD2921	FOUNDAT											
	COD. 1	Гуре		Range	e Limits							
			Min	. M	ax.	Unit						
i i	2 L	_evel	12.5	5 5	500	mbar						
		COD.	-	<u> </u>	erial and	Fill Fluid						
		1	316L SST	- Silico	on Oil <b>(1)</b>							
			COD. 0		ndicator Indicator							
i	ł	i	1	With Ind	icator							
	Ì		;	COD.	Fixing	Transmit	ter					
				1	Bracket	in L			Z	User's specification		
i	i	i		2	Ŭ	Bracket						
1	ļ	-		3	Triclam	· ,						
					COD.	Electric					А	M20 X 1.5 <b>(4)</b>
					0 1 2 3 4 5	1/2 - 14 1/2 - 14 1/2 - 1/2 1/2 - 3/4 COD. A	NPT X 3 NPT X 3 NPT X 1 NPTF ( NPTF ( Probe	6/4 NPT (310 6/4 BSP (310 /2 BSP (310 316 SST) - (316 SST) - Material/D ST / 316L S	5 SST) - 5 SST) - with ada with ada aphrage ST		BZ	PG 13.5 DIN <b>(4)</b> User's specification
	ļ	!		-		I U		ST / 316L S ST / Hastello				
i		i			-	z		specification				
	Ì	!	-	Ì	ł			Probe Len				
				ł			1	500 mm			6	1600 mm
	Ì			Ì			2	630 mm			7	2000 mm
					:		3	800 mm			8	2500 mm
	i	Ì		i		Ì	4	1000 mm			9	3200 mm
	ł		-	-	Ì	-	5	1250 mm			z	User's specification
i		i	i		-		i		obe Fill F	luid		
	i	-		i i			i				00) (0)	
					-	ł			•	Glicol Oil (Neobee M	20) <b>(9</b>	,
i I	i	:	:	i		-	i		-	ecification		
!	!			-	i		ļ	(	COD. C	Optional Items		
i		i	i	i	!	i		i 🗖				
		<u> </u>							<u> </u>			
LD2921	2	1	1	3	A	I	1	N	*	ΎT →	YPICA	AL MODEL

*Leave blank for no optional items.

MODEL	PRES	SURE TR	ANSMITT	TER WITH EXTENDED PROBE (CO	NTINUATION	4)						
	COD.	Housin	Housing Material (7) (8)									
	H0	Aluminiu	um (IP/TY	(PE) H3 316 SST for saline atmosphere (IPW/TYPEX) (6)								
	H1	316 SST	r (ip/typi	E)	H4	Copper Free Aluminium (IPW/TYPEX) (6)						
	H2	Aluminiu	um for sali	ne atmosphere (IPW/TYPEX) (6)								
		COD.	COD. Identification Plate									
		IN	CEPEL: Ex-ia									
	i		COD.	Painting	Painting							
			P0	Munsell N 6,5 Gray	P6	Epoxy Yellow						
		ł	P3	Polyester Black	P8	Without Painting						
i	1	i	P4	Epoxy White	P9	Blue Safety Base Epoxy – Eletrostatic Painting						
		į	P5	Polyester Yellow	PC	Safety Base Polyester – Eletrostatic Painting						
1	-	1		COD. Tag Plate								
	i	1		J0 With TAG	,	User's specification						
	Ì			J1 Without TAG								
	1	-	i									
LD292I	HO	IN	P0	J0	DEL NUMBI	ER						

## **Optional Items**

Special Procedures	C1 –Degrease Cleaning (Oxygen or Chlorine Service) C4 - Polishing of the sanitary connections according to 3A Certification (9)
Burnout	BD – Down Scale BU – Up Scale
Special Characteristics	ZZ – User's specifications

#### NOTES

(1) Silicone Oils not recommendations for Oxygen (O₂) or Chlorine service.
 (2) Certificate for use in Hazardous Locations (CEPEL, NEPSI, NEMKO, EXAM, FM, CSA).

(3) Certificate for use in Hazardous Locations (CEPEL, CSA).
(4) Certificate for use in Hazardous Locations (CEPEL, NEPSI, NEMKO, EXAM).

(5) Not certified for use in hazardous locations.

(6) IPW/TYPEX was tested for 200 hours according to NBR 8094 / ASTM B 117 standard.

(7) IPX8 tested for 10 meters of water column for 24 hours.

(8) Ingress Protection:

Products	CEPEL	NEMKO/EXAM	FM	CSA	NEPSI
LD29X	IP66/W	IP66/68/W	Type 4X/6/6P	Type 4X	IP67

(9) Compliant with 3A-7403 standard for food and other applications where sanitary connections are required.

- Neobee M2O Fill Fluid

- Finishing wet Face: 0.8 µm Ra (32 µ" AA)

- Wet O-Ring: Viton, Teflon and Buna-N

# **CERTIFICATIONS INFORMATIONS**

### **European Directive Information**

Authorized representative in European Community

Smar Gmbh-Rheingaustrasse 9-55545 Bad Kreuzanach

#### PED Directive (97/23/EC) – Pressure Equipment Directive

This product is in compliance with the directive and it was designed and manufactured in accordance with sound engineering practice using several standards from ANSI, ASTM, DIN and JIS.

#### EMC Directive (2004/108/EC) - Eletromagnetic Compatibility

The EMC test was performed according to IEC standard: IEC61326-1:2006, IEC61326-2-3:2006, IEC61000-6-4:2006, IEC61000-6-2:2005. For use in environment only.

Keep the shield insulated at the instrument side, connecting the other one to the ground if necessary to use shielded cable.

# ATEX Directive (94/9/EC) – Equipment and protective systems intended for use in potentially explosive atmospheres.

This product was certified according European Standards at NEMKO and EXAM (old DMT). The certified body for manufacturing quality assessment is EXAM (number 0158).

# LVD Directive 2006/95/EC – Electrical Equipment designed for use within certain voltage limits

According the LVD directive Annex II the equipment under ATEX "Electrical equipment for use in an explosive atmosphere" directive are excluded from scope from this directive.

The EC declarations of conformity for all applicable European directives for this product can be found at <u>www.smar.com</u>.

### Hazardous Locations General Information

#### Ex Standards:

Ex Standards: IEC 60079-0: 2008 General Requirements IEC 60079-1:2009 Flameproof Enclosures "d" IEC 60079-11:2009 Intrinsic Safety "i" IEC 60079-26:2008 Equipment with equipment protection level (EPL) Ga IEC 60529:2005 Classification of degrees of protection provided by enclosures (IP Code)

#### **Customer responsibility:**

IEC 60079-10 Classification of Hazardous Areas IEC 60079-14 Electrical installation design, selection and erection IEC 60079-17 Electrical Installations, Inspections and Maintenance

#### Warning:

Explosions could result in death or serious injury, besides financial damage. Installation of this instrument in an explosive environment must be in accordance with the national standards and according to the local environmental protection method. Before proceeding with the installation match the certificate parameters according to the environmental classification.

#### **General Notes:**

#### • Maintenance and Repair

The instrument modification or replaced parts supplied by any other supplier than authorized representative of Smar Equipamentos Industriais Ltda is prohibited and will void the Certification.

#### Marking Label

Once a device labeled with multiple approval types is installed, do not reinstall it using any other approval types. Scratch off or mark unused approval types on the approval label.

#### • For Ex-i protection application

- Connect the instrument to a proper intrinsically safe barrier.

- Check the intrinsically safe parameters involving the barrier, equipment including the cable and connections.

- Associated apparatus ground bus shall be insulated from panels and mounting enclosures.
- When using shielded cable, isolate the not grounded cable end.

- Cable capacitance and inductance plus  $C_i$  and  $L_i$  must be smaller than  $C_o$  and  $L_o$  of the Associated Apparatus.

#### • For Ex-d protection application

- Only use Explosion Proof/Flameproof certified Plugs, Adapters and Cable glands.

- As the instrument is non-ignition capable under normal conditions, the statement "Seal Not Required" could be applied for Explosion Proof version regarding to electric conduits connection. (CSA Approved)

- In an Explosion-Proof/Flame-Proof installation, do not remove the instrument housing covers when powered on.

#### - Electrical Connection

In Explosion-Proof installations the cable entries must be connected through conduit with sealed unit or closed using metal cable gland or closed using metal blanking plug, all with at least IP66 and Ex-d certification. For enclosure with saline environment protection (W) and ingress protection (IP) applications, all NPT thread parts must apply a proper water-proof sealant (a non-hardening silicone group sealant is recommended).

#### • For Ex-d and Ex-i protection application

- The transmitter has a double protection. In this case the transmitter shall be fitted with appropriate certified cable entries Ex-d and the electric circuit supplied by a certified diode safety barrier as specified for the protection Ex-ia.

#### Environmental Protection

- Enclosure Types (Type X): Supplementary letter X meaning special condition defined as default by Smar the following: Saline Environment approved - salt spray exposed for 200 hours at 35°C. (Ref: NEMA 250).

- Ingress protection (IP W): Supplementary letter W meaning special condition defined as default by Smar the following: Saline Environment approved - salt spray exposed for 200 hours at 35°C. (Ref: IEC60529).

- Ingress protection (IP x8): Second numeral meaning continuous immersion in water under special condition defined as default by Smar the following: 1 Bar pressure during 24hours. (Ref: IEC60529).

### Hazardous Locations Certifications

NOTE

The IP68 sealing test (immersion) was performed at 1 bar for 24 hours. For any other situation, please consult Smar.

### **North American Certifications**

#### **FM** Approvals

Intrinsic Safety (FM 3014713) IS Class I, Division 1, Groups A, B, C and D IS Class II, Division 1, Groups E, F and G IS Class III, Division 1

Explosion Proof (FM 3014713) XP Class I, Division 1, Groups A, B, C and D

**Dust Ignition Proof** (FM 3014713) DIP Class II, Division 1, Groups E, F and G DIP Class III, Division 1

Non Incendive (FM 3014713) NI Class I, Division 2, Groups A, B, C and D

**Environmental Protection** (FM 3014713) Option: Type 4X/6/6P or Type 4/6/6P

#### Special conditions for safe use:

Entity Parameters Fieldbus Power Supply Input (report 3015629): Vmax = 24 Vdc, Imax = 250 mA, Pi = 1.2 W, Ci = 5 nF, Li = 12 uH Vmax = 16 Vdc, Imax = 250 mA, Pi = 2 W, Ci = 5 nF, Li = 12 uH Temperature Class T4 Maximum Ambient Temperature: 60°C (-20 to 60 °C) Overpressure Limits: 2000 psi for ranges 2, 3 and 4 4500 psi for range 5

#### CSA International (Canadian Standards Association)

#### Class 2258 02 – Process Control Equipment – For Hazardous Locations (CSA1111005)

Class I, Division 1, Groups B, C and D Class II, Division 1, Groups E, F and G Class III, Division 1 Class I, Division 2, Groups A, B, C and D Class II, Division2, Groups E, F and G. Class III Dual Seal

#### Class 2258 04 – Process Control Equipment – Intrinsically Safe Entity – For Hazardous Locations (CSA 1111005) Class I, Division 1, Groups A, B, C and D Class II, Division 1, Groups E, F and G

Class II, Division 1, Groups E, F and G Class III, Division 1 FISCO Field Device

Model LD292 Series Pressure Transmitter; supply 12-42V dc, 4-20mA; Maximum pressure 3600 PSI; Enclosure Type 4/4X; intrinsically safe with Fieldbus/FISCO Entity parameters: Vmax = 24V, Imax = 380mA, Pmax = 5.32W, Ci = 5nF, Li = 0, when connected through CSA Certified Safety Barriers as per Smar Installation Drawing 102A0608; Temp Code T3C; Dual Seal. Note: Only models with stainless steel external fittings are Certified as Type 4X.

#### Special conditions for safe use:

Temperature Class: T3C Maximum Ambient Temperature: 40°C (-20 to 40 °C) Maximum Working Pressure: 3600 psi Dual Seal (process)

### **European Certifications**

Certificate No.: NEMKO 13 ATEX 1574X Explosion Proof: Group II, Category 2 G, Ex d, Group IIC, Temperature Class T6, EPL Gb

Ambient Temperature: -20 to 60 °C

### Certificate No: NEMKO 13 ATEX 1574X

Environmental Protection: IP66W/68W

Special Conditions for Safe Use Repairs of the flameproof joints must be made in compliance with the structural specifications provided by the manufacturer. Repairs must not be made on the basis of values specified in tables 1 and 2 of EN/IEC 60079-1

The Essential Health and Safety Requirements are assured by compliance with: EN 60079-0:2012 General Requirements EN 60079-1:2007 Flameproof Enclosures "d"

#### Certificate No: DMT 02 ATEX E 084 ) - In Progress Intrinsic Safety Group I, Category I M1, Ex ia, Group I, EPL Mb Group II, Category 1/2 G, Ex ia, Group IIC, Temperature ClassT6, EPL Ga FISCO Field Device

Supply circuit for the connection to an intrinsically safe for FISCO fieldbus circuit: Ui = 24 Vdc, Ii = 380 mA, Pi = 5.32 W, Ci  $\leq 5nF$ , Li = Neg Parameter of the supply circuit comply with FISCO model according to EN 60079-27:2008

Ambient Temperature: -40°C ≤ Ta ≤ + 60°C

#### The Essential Health and Safety Requirements are assured by compliance with:

EN 60079-0:2009 General Requirements EN 60079-11:2007 Intrinsic Safety "i" EN 60079-26:2007 Equipment with equipment protection level (EPL) Ga EN 60079-27:2008 Fieldbus intrinsically safe concept (FISCO)

### **South American Certifications**

#### Certificate No: CEPEL 96.0075X

Intrinsic Safe - Ex-ia IIC T4/T5 EPL Ga FISCO Field Device • Parameterss: Ui = 30 Vdc Ii = 380 mA Ci =5 nF Li = neg Pi = 5.32 W Ambient Temperature: -20 °C <  $T_{arrb}$  <+65 °C for T4 -20 °C <  $T_{arrb}$  <+50 °C for T5

#### Certificate No: CEPEL 98.0054

Explosion Proof - Ex-d IIC T6 EPL Gb Maximum Ambient Temperature: 40 °C (-20 a 40°C).

Environment Protection: IP66 or IP66W.

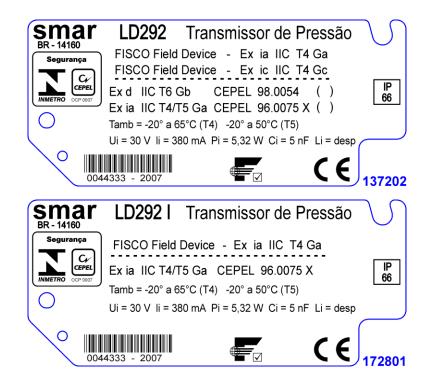
Special conditions for safe use:

The certificate number ends with the letter "X" to indicate that for the version of Pressure Transmitter model LD292 equipped with housing made of aluminum alloy, only can be installed in "Zone 0" if is excluded the risk of occurs impact or friction between the housing and iron/steel itens.

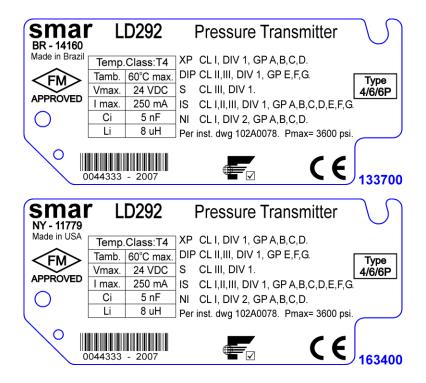
The Essential Health and Safety Requirements are assured by compliance with: ABNT NBR IEC 60079-0:2008 General Requirements ABNT NBR IEC 60079-1:2009 Flameproof Enclosures "d" ABNT NBR IEC 60079-11:2009 Intrinsic Safety "i" ABNT NBR IEC 60079-26:2008 Equipment with equipment protection level (EPL) Ga IEC 60079-27:2008 Fieldbus intrinsically safe concept (FISCO) ABNT NBR IEC 60529:2005 Classification of degrees of protection provided by enclosures (IP Code)

### **Asian Certifications**

#### Certificate No: Nepsi GYJ071320


Intrinsically safe - Ex ia, IIC T4/T5/T6 Maximum Ambient Temperature: 85 °C Entity Parameters: Ui = 24 Vdc Ii = 380 mA Ci = 5 nF Li = 0 Pi = 5.32 W FISCO Field Device Ex ia IIC T4

## Identification Plates and Control Drawings


### **Identification Plate**

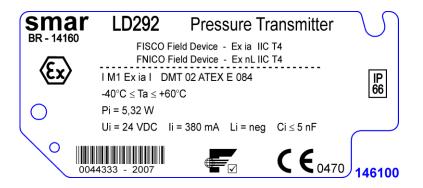
• Identification of Intrinsically Safe and Explosion Proof for gas and steam:

CEPEL

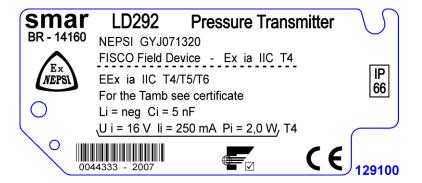


FΜ

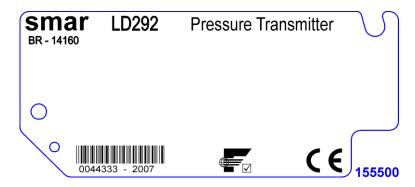



CSA



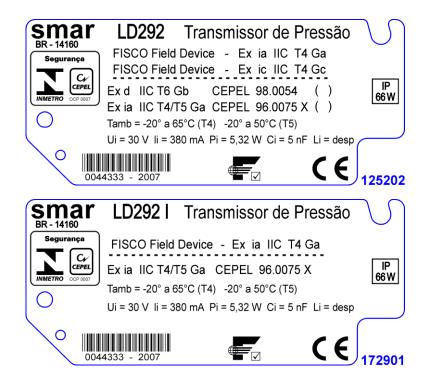

#### **NEMKO and DMT**




DMT

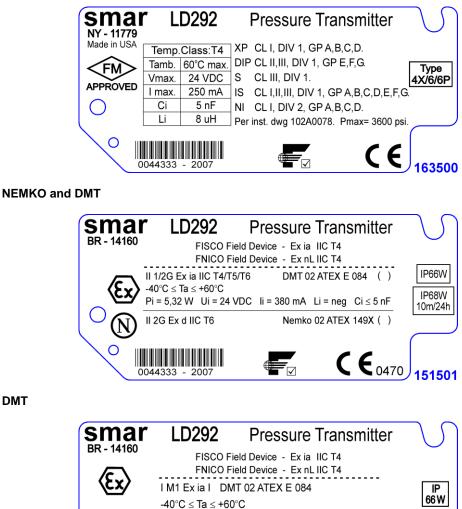


#### NEPSI

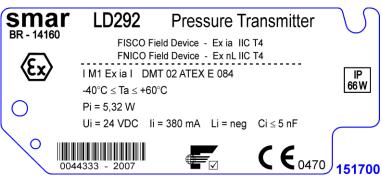



WITHOUT APPROVAL




• Identification if Intrinsically Safe and Explosion Proof for saline atmospheres:

#### CEPEL




FΜ





DMT



# **Control Drawing**

CSA

HAZARDOUS AREA	I THE CEC PART I. BE INSULATED FROM PANELS	SISTANCE TO EARTH MUST BE OAD CURVE. INSULATE THE END NOT GROUNDED. AUST BE INSTALLED IN	AUCTIONS. AETERS AS LISTED BELOW.	Vmax=24V Pmax=5.32W	CAUTION: EXPLOSION HAZARD - SUBSTITUITION OF COMPONENTS MAY IMPAIR SUITABILITY FOR USE IN HAZARDOUS LOCATIONS. CAUTION: EXPLOSION HAZARD - DO NOT DISCONNECT FOR CLASS I, DIV. 2	EQUIPAMENT THAT IS NOT CONNECTED TO BARRIERS
	REQUIREMENTS: 1 INSTALLATION TO BE IN ACCORDANCE WITH THE CEC PART I. 2 ASSOCIATED APPARATUS GROUND BUS TO BE INSULATED FROM PANELS AND MOUNTING FROM OSURES.	<ol> <li>3- ASSOCIATED RAPARATUS GROUND BUS RESISTANCE TO EARTH MUST BE SMALLER THAN 1(ONE) OHM.</li> <li>4- OBSERVE TRANSMITTER POWER SUPPLY LOAD CURVE.</li> <li>5- WIRES: TWISTED PAIR, 22AWG OR LARGER.</li> <li>6- SHIELD IS OPTIONAL IF USED, BE SURE TO INSULATE THE END NOT GROUNDED.</li> <li>7 - BARRIERS MUST BE "CSA" CERTIFIED AND MUST BE INSTALLED IN</li> </ol>	ACCORDANCE WITH MANUFACTURES INSTRUCTIONS. 8- INTRINSIGALLY SAFE, Exia FOR USE IN CLASS I, DIV. 1, GROUPS A, B, C, D; CLASS II, DIV. 1, GROUPS E, F, G; CLASS III, DIV. 1, WITH ENTITY INPUT PARAMETERS AS LISTED BELOW.	INTRINSICALLY SAFE APPARATUS ENTITY VALUES: C⊫5nF Li=0 Vmax=24V Ecc 60079-27 {FISCO FIELD DEVICE: Imax=380mA Pmax=5.32W		MODELS LD292 & LD293 - SERIES PRESSURE GAGE TRANSMITTERS.
NON HAZARDOUS OR DIVISION 2 AREA	SAFE AREA APPARATUS	UNSPECIFIED, EXCEPT THAT IT MUST NOT BE SUPPLIED FROM, NOR CONTAIN UNDER NORMAL OR ABNORMAL CONDITIONS, A SOURCE OF POTENTIAL IN RELATION TO EARTH IN EXCESS OF 250VAC OR 250VDC.	ASSOCIATED APPARATUS POWER SUPPLY	COPTIONAL SHIELDING	+ FISCO + POWER SUPLLY O GROUND BUS	ENTITY PARAMETERS FOR ASSOCIATED APPARATUS Ca 2 CABLE CAPACITANCE +Ci La 2 CABLE INDUCTANCE +Li La 2 CABLE INDUCTANCE +Li ISC 2 30000A IEC 80079-27
	PROVAL COM	NTROLLED BY C.A.R.		CHECKED SINASTRE	PROJECT APPROVAL SINASTRE MISSAWA	smar
APF 03 02	MARCIAL 25 / 09 /08 MARCIAL	MISSAWA ALT 25 / 09 / 08 0043/ MISSAWA ALT	25 / 01 / 01	25/01/01	25 / 01 / 01 25 / 01 / 01	

HAZARDOUS AREA RDANCE WITH THE CEC PART I.	BE INSULATED FROM FAILES	INSULATE THE END NOT GROUNDED. MUST BE INSTALLED IN RUCTIONS.	ON-INCENDIVE FIELD WIRING	Vmax=24V Pmax=9,98W	CAUTION: EXPLOSION HAZARD - SUBSTITUITION OF COMPONENTS MAY IMPAIR SUITABILITY FOR USE IN HAZARDONISI IOCATIONS	CAUTION: EXPLOSION HAZARD - CAUTION: EXPLOSION HAZARD - DO NOT DISCONNECT FOR CLASS I, DIV. 2 CLASS I, DIV. 2 FOULIDAMENT THAT'IS NOT CONNECTED	TO BARRIERS	ň
HAZARDOUS AREA REQUIREMENTS: 1 - INSTALLATION TO BE IN ACCORDANCE WITH THE CEC PART I. 2 - ASSOCIATED APPARATIS GROLIND RUSTO RE INSULATED REOM PANELS		<ol> <li>5- SHIELD IS OPTIONAL IF USED, BE SURE TO INSULATE THE END NOT GROUNDED.</li> <li>7- BARRIERS MUST BE "CSA" CERTIFIED AND MUST BE INSTALLED IN ACCORDANCE WITH MANUFACTURES INSTRUCTIONS.</li> <li>8 - MONLINCENDIVE FOR</li> </ol>		NON-INCENDIVE SAFE APPARATUS ENTITY VALUES: CI=5nF LI=0 Vmax=24V IECe007927 FNICO FIELD DEVICE: Imax=570mA Pmax=9.98W				PRESSURE GAGE TRANSMITTERS
NON HAZARDOUS OR DIVISION 2 AREA	SAFE AREA APPARATUS UNSPECIFIED, EXCEPT THAT IT MUST NOT BE SUPPLIED FROM, NOR CONTAIN UNDER NORMAL OR ABNORMAL CONDITIONS, A SOURCE OF POTENTIAL IN RELATION TO	EARTH IN EXCESS OF 250VAC OR 250VDC.	ASSOCIATED APPARATUS PLY		+ FNICO + - POWER SUPLLY -		ENTITY PARAMETERS FOR ASSOCIATED APPARATUS Ca ≥ CABLE CAPACITANCE +Ci La ≥ CABLE INDUCTANCE +Li	FNICO POWER SUPPLY S 570mA
NON HAZARDO	UNSPEC. BE SUPPI NORMA SOURCE	EART	POWER SUPPLY	ı ——		×3	ENTITY PARAM Ca ≥ CABLE C La ≥ CABLE IN	IEC 60079-27
	CONTROLLED BY C IAL MISSAWA /08 25/ 09 /08	A.R. ALT DE 0043/08 ALT DE	DRAWN MOACIR 25 / 01 /01 EQUIPMENT:	CHECKED SINASTRE 25 / 01 / 01		APPROVAL MISSAWA 25 / 01 / 01		

sma	r	SRF - Pr	ı	Proposal No.:								
Company:			U	Init:		Invoice:						
	COMMERCIA					NICAL CONTACT						
Full Name:			Full Name	):								
Function:			Function:									
Phone:		Exte	Phone:			Extension:						
Fax:					Fax:							
Email:					Email:							
Model:	EQUIPMENT DATA Model: Sensor Number: Sensor Number:											
				Ocha	Humber.							
Technology:							Version Firmwa	ire:				
() 4-20 mA () HAI	RT [®] () FOU	NDATION fieldbu		) PROFIBUS								
Process Fluid:			P	ROCESS DA	ſA							
							1					
Calibration F	Calibration Range Ambient Temperature ( °F )					nperature ( °F )	Process Pressure					
Min.:	Max.:	Min.:	Max.:	Min.	.: Max.:		Min.:	Max.:				
Static Pres	sure	Vac	uum									
Min.:	Max.:	Min.:	Max.:									
Normal Operation Tim	e:			Fai	lure Date:							
	(Ple	ase describe the (		URE DESCRI		now it reproduces, e	etc.)					
	(110											
			-	DBSERVATIO								
			Ľ	DSERVATIO	13							
			US	ER INFORMA	TION							
Company:												
Contact:				Title:		S	ection:					
Phone:		Extension:		E-ma	il:							
Date:				Signa	iture:							
Dato.				Giglie								
For warranty or non-wa	ranty renair place		recentativ	2								
Further information abo	ut address and co	ntacts can be found	d on www.	smar.com/con	tactus.asp.							